
Regression Analysis in R

1 Purpose

The purpose of this activity is to provide you with an understanding of regression analysis and to both
develop and apply that knowledge to the use of the R statistical programming environment.

2 Overview

This lab can be completed during class time and at-home. You should allocate time to complete the
relevant portions of the lab in line with the scheduled topics for each week.

3 Your Task

Using R as instructed, complete the following activities.

3.1 Bivariate Regression

1. For this lab, we will use the UK portion of the European Social Survey (ESS) Round 6 data
from 2012. You can get the data file from Moodle or download it directly from: http://www.

europeansocialsurvey.org/download.html?file=ESS6GB&c=GB&y=2012.1

2. Use setwd() to set your working directory to wherever you saved the file.

3. Read the data into R using:

library("rio")

d <- import("ESS6GB.dta", haven = FALSE)

4. How many observations are there in the dataset? How many variables?

5. Examine the polintr variable, which measures political interest. Tabulate the variable:

table(d$polintr)

Then, replace the values of “Refusal”, “Don’t know”, and “No answer” (if there are any) as
missing values:

d$polintr[d$polintr %in% 5:7] <- NA

Repeat the tabulation to confirm that this work. Using what you have learned already, attempt
to answer the following questions:

(a) What proportion respondents are “very interested” in politics?

(b) What is the modal response category for this question?

1You may have to login with an email address and unzip the file. Save the file on your computer and unzip it.
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(c) What is the median level of interest?

(d) Using the gender variable (gndr), assess who is more interested in politics: men or women?

(e) Using a statistical test, assess whether the difference in political interest is statistically
distinguishable from zero.

6. Now examine a different set of variables: happiness (happy) and religiosity (rlgdgr). First,
remove the nonresponse categories from these variables:

levels(d$rlgdgr)[12:14] <- NA

levels(d$happy)[12:14] <- NA

7. How happy are people in Great Britain on average? How religious are they?

8. Draw a scatterplot of religiosity and happiness:

library("ggplot2")

ggplot(d, aes(x = as.integer(rlgdgr), y = as.integer(happy))) +

geom_jitter(na.rm = TRUE)

Looking at the plot, how correlated would you say these variables are? Does happiness go with
religiosity?

9. Use cov() to calculate the covariance of these two variables and cor() to calculate the correlation
coefficient for this relationship. Note: You will have to wrap the variable names in as.integer()

(like in the above code) in order to do these calculations. Also, see ? cor and read about the
use argument to cor() and cov() in order to correctly calculate these statistics.

10. Recall that the correlation is simply a rescaled version of the covariation: it is the covariance
of two variables divided by the product of their standard deviations. Calculate the standard
deviation of each variable and — combined with the covariance you calculated above — use that
to manually calculate the correlation coefficient for this relationship. Does it match the value
returned by cor()?

11. Recall that the correlation coefficient says nothing about the “size” of the relationship between
two variables. Instead, it captures the degree to which that relationship is well-represented by a
straight-line. If the correlation is high (close to -1 or +1), we know that the data can be well-
represented by a line but we do not know how much of an increase we would expect to see in one
variable given an increase in the other variable. “Regression” is a method for representing the
covariance between variables in another way, which provides us with exactly this way of describing
the relationship.

12. In regression, we draw a line through the scatterplot of the two variables that represents the “line
of best fit” and that we can summarize by the “slope” of the line: the expected change in the
y-axis variable given a one-unit increase in the x-axis variable. Add the following line to your
scatterplot from above to see this line of best fit:

+ geom_smooth(method = "lm")

13. To estimate the value of the slope, all we need to know is that the slope of the line is a rescaled
version of the covariance of the two variables. Unlike the correlation coefficient, however, to
estimate the slope, we rescale the covariance by the variance of the x-axis variable. To do this
calculation, we have to be a little careful, so let’s create a new data.frame to store our variables:
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(b) Residual Sum of Squares

Figure 1: Sum of Squares for a Simple Scatterplot

new <- na.omit(data.frame(religiosity = as.integer(d$rlgdgr),

happy = as.integer(d$happy)))

Note: We use na.omit() here to remove missing data from these two variables. How many
observations did we lose by removing these missing values?

14. Now, using the new data.frame, calculate the covariance of the two variables. Then, calculate the
variance of religiosity. Divide the covariance by the variance of religiosity. This is the slope
of the regression line. How much happier is someone if they were to increase their religiosity by
one point on this question scale? Does this correspond with the relationship in your scatterplot;
can you see the slope of the line matches this calculated slope?

15. We do not have to manually calculate the slope in this way. Indeed, R provides a function called
lm() that allows us to calculate this directly. In R, run the following to estimate this regression
model and store the results as an object called m. View the results.

m <- lm(happy ~ religiosity, data = new)

m

Does the slope match what you calculated by hand?

16. Another way of thinking about regression is in terms of the “sum of squares.” We can think of
the “sum of squares” as the total amount of variation in the y variable (happiness). You can
calculate the total sum of squares for our data using:

sum((new$happy - mean(new$happy))^2)

This quantity (the total sum of squares) is literally a sum of the area of several squares. Figure
1(a) shows this for a simple example scatterplot. The total sum of squares is simply the sum of
the individual deviation of each observed value of y from the mean of y, squared.

17. In regression, we are “explaining” some of that total variation in y with the covariation between
x (religiosity) and y (happiness). This explained portion of the sum of squares is called the
“sum of squares, explained” or “model sum of squares”; the amount of variation in y that is not
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“explained” by x is called the “residual sum of squares”. This residual sum of squares is literally
the sum of the squared areas formed by the distance between each point and the “predicted value”
(or “fitted value”) of y expected by the regression line given that observation’s value of x. Figure
1(b) shows the residual sum of squares for the same example scatterplot.

18. If all of the variation in y is explained by the variation in x, then the residual sum of squares will
be small while the explained sum of squares will be large. You can calculate the residual sum of
squares using the following:

sum((new$happy - (coef(m)[1] + (coef(m)[2] * new$religiosity)))^2)

How large is the residual sum of squares compared to the total sum of squares you calculated
above?

19. A common way to assess the “goodness of fit” of a regression estimation is whether the explained
sum of squares is large. The proportion of the total sum of squares that is “explained” by the
model is called the “R-squared” statistic, sometimes called the “coefficient of determination.”
It is simply 1 minus the ratio of the residual sum of squares to the total sum of squares. It is
interpreted as a proportion: if it is 0, then religiosity explains none of the variation in happiness;
if it is 1, then religiosity explains all of the variation in happiness. What is the R-squared for this
relationship?

20. Recall from earlier that the regression slope is simply a scaled version of the covariance of the two
variables. The correlation coefficient is also a scaled version of the covariance. Now, you can also
note that there is a direct correspondence between the correlation coefficient and the R-squared
value you just calculated. R-squared is simply the bivariate correlation coefficient, squared. Try
it and confirm this is the case.

21. This focus on the residuals allows us to demonstrate a few R programming features that have
useful practical applications:

(a) m$fitted will return a vector containing the “fitted value” of y for each observation (given
its value of x)

(b) m$residuals will return a vector containing the residuals for each observation in your
dataset. These residuals will be equal to new$happy - m$fitted

(c) The predict() function allows you to calculate the fitted value of y for a given value of x.
By default, it simply returns the same thing as doing all.equal(predict(m), m$fitted).
But, if you supply a data.frame as the value of the newdata argument, you can obtained the
fitted value for an arbitrary value of x: predict(m, newdata = data.frame(religiosity

= 3))

22. Returning to our main focus, another common measure of model fit is called the residual mean
squared error, or sometimes simply σ̂. This is simply the standard deviation of the residuals (the
unexplained variation in y). As religiosity explains more and more of the variation in happiness,
then the residuals will become small and have a lower variance (and lower standard deviation).2

There are three ways to calculate sigma: (a) by manually calculating the residuals and taking the
standard deviation thereof, (b) extracting the residuals from the m object (returned by lm()), or
(c) using R’s calculation of sigma:

sqrt(sum((new$happy - (coef(m)[1] + (coef(m)[2] * new$religiosity)))^2)/nrow(new))

sd(residuals(m))

2Recall the standard deviation is simply the square root of the variance.
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The reason this quantity is useful as a measure of model fit is that it is on the scale of the y-axis
variable (happiness) and can be directly compared to the standard deviation of y. If religiosity
explained a lot of the variation in happiness, then σ̂ would be small compared to sd(new$happy).
Is it?

23. Returning to our estimated regression model, m, use summary(m) to see a more complete print out
of the regression results. Can you make sense of all of the information that is displayed? What
are the values of the following quantities:

(a) Regression slope

(b) σ̂

(c) R-squared

(d) Mean residual

(e) y-intercept (the value of happiness when religiosity = 0)

24. You will note that the table includes a number of other statistics that we haven’t discussed,
including the standard errors of the regression slope and y-intercept, and t-statistics and p-values
for each of these. We are not going to cover the calculation of the standard errors, but can you
see how the t-statistics are calculated given what we covered last week?

25. Is the estimated regression slope substantively large? Is the slope significantly different from zero?

26. In order to ensure your understanding, you may want to redo some of these exercises using other
combinations of variables (e.g., political interest, etc.). One particularly illustrative example
would be to use gender as an x-axis variable. (You will want to redefine gender as:

d$gender <- as.integer(d$gndr)-1

In that case, you will hopefully note some similarities between the conditional mean of an outcome
variable given gender:

aggregate(as.integer(polintr) ~ gender, data = d, FUN = mean, na.rm = TRUE)

and the results of a corresponding regression analysis:

lm(as.integer(polintr) ~ gender, data = d)

27. Recall that the p-value in a statistical significance test represents the probability of observing a
t-statistic as large or larger than the one observed in a sample of the data from a population where
the true t-statistic is zero (in this case, where the slope of the relationship between religiosity and
happiness is non-existent).

As an advanced exercise, you emulate that process of repeated sampling through a process
known as “bootstrapping”. In bootstrapping, you treat your sample data as if they were a pop-
ulation and draw repeated samples (with replacement) from your sample and apply an estimator
(in this case, a regression estimator) to each resampled dataset. In essence, bootstrapping creates
an approximate sampling distribution for your statistic.

If you extract the estimated slope from each bootstrap sample, this bootstrap sampling distribu-
tion mimics the hypothetical distribution of slopes you would expect to observe in a population
where the true slope was equal to that observed in your actual sample data. The proportion
of slopes less than zero in this bootstrapped distribution can be interpreted as the p-value (the
probability of observing a slope as large as the one you observed) from a population where the
true slope was zero.

Here’s the code:
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Figure 2: A Causal Graph

boot <- replicate(5000L,

lm(happy ~ religiosity,

data = new[sample(1:nrow(new), nrow(new), TRUE), ])$coef[2])

summary(boot)

sum(boot < 0)/length(boot) # p-value

What is p-value of the regression slope, based on the bootstrap sampling distribution?

3.2 Multiple/Multivariate Regression

Note: Material in this section is relevant to LT Week 8 and Problem Set 7.

1. Think again about political interest. How correlated are interest, happiness, gender, and reli-
giosity? If they are correlated, can we interpret those correlations as causal relationships? What
criteria for causal inference to we have to satisfy in order to interpret this correlation as a causal
relationship?

2. One major barrier to causal inference here is confounding: the relationship between these two
factors may be explained by some other variable or variables. We might be concerned that there
is some earlier variable, that precedes both religiosity and (current) happiness in time that causes
both variables, and in turn makes it appear that the two variables are related due to a causal
relationship between religiosity and happiness.

To think about this possibility, it can be useful to draw a “causal diagram” in the form of
a “directed, acyclic graph” (DAG).3 Figure 2 shows an example DAG. We can imagine that
religiosity is X and happiness is Y. We are concerned bout variables like Z and W that cause
both. Draw a possible DAG, labeling possible confounding variables. (You might also wnat to
include other variables in your graph, like A and E that cause happiness but that you do not
think cause religiosity.)

3. Once you have a reasonable DAG showing possibly causal relationships, think about whether
you can observe any of the variables in your DAG. Are all of the potentially confounding vari-
ables you named available in the ESS dataset? You can find a complete listing of variables in:
attributes(d)$var.labels or in the complete documentation of the ESS questionnaire.4

4. If you have access to potentially confounding variables, then we can use an elaboration of the
bivariate regression models we just discussed to help to control for this confounding. If potentially

3Recall we encountered these once before when reading Morgan and Winship in MT Week 9.
4http://www.europeansocialsurvey.org/docs/round6/fieldwork/united_kingdom/ESS6_questionnaires_GB.

pdf
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confounding variables in your DAG are unobserved (either because they are not included in the
ESS or because they are perhaps “unobservable” factors), there is nothing we can do to rule out
the potential for confounding. We are, in that situation, completely unable to draw a causal
inference from the observational data in front of us. We would need more data!

5. How can multiple regression help us to address confounding? The mathematics here is a bit
complicated, but the following exercises are meant to provide some intuition. Before we begin,
make sure you have a firm grasp on the variables you have identified. Use summary() or other
functions to know the key statistics of each variable and ggplot2 to produce scatterplots or other
graphics comparing these variables to one another.

6. Multiple regression works by simultaneously accounting for the influence of multiple “right hand
side” (RHS) variables on a single “outcome” variable (Y in the example DAG in Figure 2). How
does it do this? Let’s start with a simple example (which you can expand using the variables in
your DAG). In the below model we are trying to see whether there is still an association between
religiosity and happiness once we “control for” interest in politics:

new2 <- na.omit(data.frame(happy = as.integer(d$happy),

religiosity = as.integer(d$rlgdgr),

pinterest = as.integer(d$polintr),

gender = as.integer(d$gndr)))

m2 <- lm(happy ~ religiosity + pinterest, data = new2)

Basically, this model says that we think happiness might be a function of religiosity, political
interest, and gender, and we want to know how much each contributes to happiness. By including
all variable in one regression equation, we estimate the influence of each variable on the outcome
accounting for the simultaneous influence of the other RHS variables. Is there still a relationship
between religiosity and happiness once we account for these other factors?

7. Try estimating bivariate relationships between each of these RHS variables and the outcome.
How do the estimated slopes in the bivariate models compare to the estimated slopes in the
multivariate specification?

p1 <- lm(happy ~ religiosity, data = new2)

p2 <- lm(happy ~ pinterest, data = new2)

8. When we regress an outcome on a variable, we aim to break the correlation between the residuals
(the unexplained parts of y) and the RHS variable. TO see this, look at the correlations between
the residuals from each of the bivariate models and the RHS variable we included:

cor(p1$residuals, new2$religiosity)

cor(p2$residuals, new2$pinterest)

This correlation is basically zero in each case.

9. But when we exclude a RHS variable (leaving it out of the regression equation), the residuals of
y might still be associated with that variable:

round(cor(cbind(p1$residuals, new2$religiosity, new2$pinterest)), 3)

round(cor(cbind(p2$residuals, new2$religiosity, new2$pinterest)), 3)
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10. We can see that the excluded variables appear to still be associated with the outcome (i.e., there
is some residual some of squares that is still associated with the excluded RHS variables). If we
include these, as in the multivariate model m2, we can account for the independent influences of
each of these factors. But how does this work? To understand multiple regression we have to
understand a simpler concept: the partial correlation.

A partial correlation is the correlation between two variables controlling for the influence of a third
variable. If we want to know the partial correlation between happy and religiosity, controlling
for pinterest, we regress each variable on pinterest and correlate their residuals:

r1 <- lm(happy ~ pinterest, data = new2)$residuals

r2 <- lm(religiosity ~ pinterest, data = new2)$residuals

cor(r1, r2)

This removes the common influence of the third variable from the original correlation:

cor(new2$happy, new2$religiosity)

which in this case is small.

11. Multiple regression is simply a series of partial correlations. If we want to know the slope of the
relationship between religiosity and happiness, we simply regress the residuals of the regression
of happy on pintrest on the residuals from the regression of religiosity on pinterest:

lm(r1 ~ r2)

# or:

lm( lm(happy ~ pinterest, data = new2)$residuals ~

lm(religiosity ~ pinterest, data = new2)$residuals )$coef

Similarly, if we want to know the influence of political interest controlling for religiosity, we do
something analogous:

lm( lm(happy ~ religiosity, data = new2)$residuals ~

lm(pinterest ~ religiosity, data = new2)$residuals )$coef

Note how the slope for pinterest and the slope for religiosity in the previous two partial
correlation models are identical to the slopes from a multivariate regression of happy on both
pinterest and religiosity:

lm(happy ~ pinterest + religiosity, data = new2)$coef

All a multiple regression model is doing is engaging a series of simultaneous regressions of the
outcome on each RHS variable and each RHS variable on all the other RHS variables.

12. Everything that we learned above about bivariate regressions — residuals, fitted/predicted values,
measures of model fit, statistical significance, etc. — applies in a multiple regression context.
Explore some of these aspects of the multivariate regression models we have just estimated.

13. The only thing that is different about bivariate and multivariate regression is the substantive
interpretation of estimated regression slopes. Rather than talk about these slopes as the “influence
of X on Y” we instead interpret them as the “influence of X on Y controlling for Z” or the “influence
of X on Y all else constant”. This is a subtle change but it’s important to remember that in a
multivariate regression we are not estimating a raw relationship but rather than relationship
accounting for the variance in X and Y explained by the other RHS variables in the model. For
this reason, the slopes in a multivariate regression are sometimes called “marginal effects” due
to their representing the change of influence of one variable while the other variables remain
constant.

8


	Purpose
	Overview
	Your Task
	Bivariate Regression
	Multiple/Multivariate Regression


