From Description to Causation

Department of Government London School of Economics and Political Science

2 Over-Time Changes

3 Getting Systematic about Causality

Over-Time Changes

Getting Systematic about Causality

What makes something a *cause*?

Write for 1 minute.

2 Over-Time Changes

3 Getting Systematic about Causality

Correlation

Correlation is the *non-independence* of two variables for a set of observations

Correlation

- Synonyms: correlation, covariation, relationship, association
- Any correlation is potentially causal
 - X might cause Y
 - Y might cause X
 - X and Y might be caused by Z
 - X and Y might cause Z
 - There may be no causal relationship

Flashback!

Two Categories of Inference:

- Descriptive InferenceWhat are the facts?
- 2 Causal InferenceWhy does something occur?

The mind tends to interpret correlations and patterns as evidence of causal relationships!

But this is rarely correct!

Source: Wikimedia Commons

Source: Wikimedia Commons

Source: The Economist, 8 July 2016

Source: The Economist, 8 July 2016

700 Average SAT Quantitative Score 600 500 0% 25% 50% 75% 100% % Female Majors

U.S. college majors: Average SAT Quantitative score of students by gender ratio

Sources: Educational Testing Services (statisticbrain.com/iq-estimates-by-intended-college-major) National Center for Education Statistics (nces.ed.gov/programs/digest/d13/tables/dt13_318.30.asp) Author: Randy Olson (randalolson.com / garadal olson)

Source: Randal Olson

Table A: Proportion of individuals at different stages of the CJS process by ethnic group compared to general population, England and Wales

	White	Black	Asian	Mixed	Chinese or Other	Unknown	Total
Population aged 10 or over 2009	88.6%	2.7%	5.6%	1.4%	1.6%	-	48,417,349
Stop and Searches (s1) 2009/10	67.2%	14.6%	9.6%	3.0%	1.2%	4.4%	1,141,839
Arrests 2009/10	79.6%	8.0%	5.6%	2.9%	1.5%	2.4%	1,386,030
Cautions 2010 ⁽¹⁾	83.1%	7.1%	5.2%	-	1.8%	2.8%	230,109
Court order supervisions 2010	81.8%	6.0%	4.9%	2.8%	1.3%	3.2%	161,687
Prison population (including foreign nationals) 2010	72.0%	13.7%	7.1%	3.5%	1.4%	2.2%	85,002

Note:

1. Data based on ethnic appearance and therefore do not include the Mixed category.

Source: Ministry of Justice, "Statistics on Race and the Criminal Justice System 2010"

Source: StackExchange

rigencom

Source: TylerVigen.com

Naive Causal Inference

- Correlations are not necessarily causal
- Our mind thinks they are because humans are not very good at the kind of causal inference problems that social scientists care about
- Instead, we're good at understanding physical causality

Physical causality

Action and reaction

Physical causality

- Action and reaction
- Example:
 - Picture a ball resting on top of a hillWhat happens if I push the ball?

Physical causality

- Action and reaction
- Example:
 - Picture a ball resting on top of a hillWhat happens if I push the ball?

Features:

- Observable
- Single-case
- Deterministic
- Monocausal

2 Over-Time Changes

3 Getting Systematic about Causality

Pre-Post Change Heuristic

- Our intuition about causation relies too heavily on simple comparisons of *pre-post change* in outcomes before and after something happens
 - No change: no causation
 Increase in outcome: positive effect
 Decrease in outcome: negative effect

Pre-Post Change Heuristic

- Our intuition about causation relies too heavily on simple comparisons of pre-post change in outcomes before and after something happens
 - No change: no causation
 Increase in outcome: positive effect
 Decrease in outcome: positive effect
 - Decrease in outcome: negative effect
- Why is this flawed?

Threats to Validity

Campbell and Ross talk about six "threats to validity" (i.e., threats to causal inference) related to time-series analysis

Flaws in causal inference from pre-post comparisons

- 1 Maturation or trends
- 2 Regression to the mean
- ³ Selection
- 4 Simultaneous historical changes
- Instrumentation changes
- 6 Monitoring changes behaviour

Maturation or trends

- Is a shift in an outcome before and after a policy change the impact of the policy or a small part of a longer time trend?
- Case Study: Connecticut crackdown on speeding (1955)

Regression to the mean

Is a shift in an outcome before and after a policy change the impact of the policy or a function of statistical variation?

 Case Study: Connecticut crackdown on speeding (1955)

Selection

Is a shift in an outcome before and after a policy the impact of the policy or the result of the policy being implemented when outcomes are extreme?

 Case Study: Connecticut crackdown on speeding (1955)

Simultaneous changes

- Is the shift in an outcome before and after a policy the impact of the policy or the result of a simultaneous historical shift?
- Case Study: US Great Depression Policy

Instrumentation changes

- Is the shift in an outcome before and after a policy the impact of the policy or a change in how the outcome is measured?
- Case Study: Age-adjusted mortality rates

Table 2. Texas 1998 Cancer Mortality Rates (Cases per 100,000), by Cancer Site,Using 1970 and 2000 Standard Populations

	Male				Female		
Cancers	1970	2000	Change (%)	1970	2000	Change (%)	
All	202.8	258.9	27.7	131.6	163.7	24.4	
Colon and rectum	19.5	25.1	29.2	13.0	17.2	32.9	
Lung and bronchus	69.7	85.6	22.7	33.8	40.6	20.1	
Prostate	22.4	33.8	50.4				
Breast				22.2	27.0	21.9	
Brain, other nervous system	5.1	6.0	18.2	3.5	4.1	16.0	

Monitoring changes behaviour

- Is the shift in an outcome before and after a policy the impact of the policy or a change in response to measuring the outcome per se?
- Case Study: Educational testing

The more any quantitative social indicator is used for social decision-making, the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor.

- Donald T. Campbell (1979)

Flaws in causal inference from pre-post comparisons

- 1 Maturation or trends
- 2 Regression to the mean
- ³ Selection
- 4 Simultaneous historical changes
- Instrumentation changes
- 6 Monitoring changes behaviour

Over-Time Changes

Getting Systematic about Causality

2 Over-Time Changes

3 Getting Systematic about Causality

Directed Acyclic Graphs

 Causal graphs (DAGs) provide a visual representation of (possible) causal relationships

Directed Acyclic Graphs

- Causal graphs (DAGs) provide a visual representation of (possible) causal relationships
- Causality flows between variables, which are represented as "nodes"
 - Variables are causally linked by arrows
 - Causality only flows *forward* in time

Directed Acyclic Graphs

- Causal graphs (DAGs) provide a visual representation of (possible) causal relationships
- Causality flows between variables, which are represented as "nodes"

Variables are causally linked by arrowsCausality only flows *forward* in time

- Nodes opening a "backdoor path" from X → Y are confounds
 - "Selection bias" or "Confounding"

Causal Inference

Causal inference (typically) involves gathering data in a systematic fashion in order to assess the size and form of correlation between nodes X and Y in such a way that there are no backdoor paths between X and Y by controlling for (i.e., conditioning on, holding constant) any confounding variables, **Z**.