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Correlation Regression

Correlation as Measure of
Bivariate Relationship

Covariance:
Cov(X ,Y ) = ∑n

i=1
(Xi − X̄ )(Yi − Ȳ )

n − 1

Correlation:
Corr(X ,Y ) = rx ,y = ∑n

i=1
(Xi − X̄ )(Yi − Ȳ )

(n − 1)sxsy
where sx =

√∑n
i=1(xi − x̄)2
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Correlation is linear!

Source: Wikimedia

https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg
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Guess the Correlation!

1 Go to:
http://guessthecorrelation.com/

2 Play a few rounds

http://guessthecorrelation.com/
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Regression
Definition: a statistical method for
measuring the relationships between one
variable and many other variables

Uses of Regression
1 Description
2 Prediction
3 Causal Inference

Ordinary least squares (OLS) regression
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Interpretations of OLS

1 Line (or surface) of best fit

2 Ratio of Cov(X ,Y ) and Var(X )

3 Minimizing residual sum of squares
(SSR)

4 Estimating unit-level causal effect
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Bivariate Regression I
Y is continuous

X is a randomized treatment
indicator/dummy (0, 1)

How do we know if the X had an effect
on Y ?

Look at outcome mean-difference:
E [Y |X = 1]− E [Y |X = 0]
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Bivariate Regression I

Mean difference
(E [Y |X = 1]− E [Y |X = 0])
is the regression line slope

Slope (β) defined as ∆Y
∆X

∆Y = E [Y |X = 1]− E [Y |X = 0]

∆X = 1− 0 = 1
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Correlation Regression

Three Equations
1 Population:

Y = β0 + β1X (+ε)

2 Sample estimate:
ŷ = β̂0 + β̂1x + e

3 Unit:
yi = β̂0 + β̂1xi + ei

= ȳ0i + (y1i − y0i)xi + (y0i − ȳ0i)
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Correlation Regression

Continuous X

If x is continuous, calculation is more
complicated

Rather than β1 being the
mean-difference in outcomes, it is the
slope across all values of x

β̂1 = Cov(x , y)/Var(x)
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Calculations

xi yi xi − x̄ yi − ȳ (xi − x̄)(yi − ȳ) (xi − x̄)2

1 1 ? ? ? ?
2 5 ? ? ? ?
3 3 ? ? ? ?
4 6 ? ? ? ?
5 2 ? ? ? ?
6 7 ? ? ? ?
x̄ ȳ Cov(x , y) Var(x)
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x̄ ȳ Cov(x , y) Var(x)



Correlation Regression

Calculations
If x is continuous, calculation is more complicated:
β̂1 = Cov(x , y)/Var(x)

xi yi xi − x̄ yi − ȳ (xi − x̄)(yi − ȳ) (xi − x̄)2

1 1 −2.6̄ -3 −6.66̄ 6.25
2 5 −1.3̄ +1 −2.00 2.25
3 3 −0.6̄ -1 −0.33̄ 0.25
4 6 +0.3̄ +2 −0.16̄ 0.25
5 2 +1.6̄ -2 −2.50 2.25
6 7 +2.3̄ +3 −8.33̄ 6.25

3.5 3.6̄ 11 17.5
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Intercept β̂0

Simple formula: β̂0 = ȳ − β̂1x̄

Intuition: OLS fit always runs through
point (x̄ , ȳ)

Ex.: β̂0 = 3.6̄− 0.627 ∗ 3.5 = 1.46̄

ŷ = 1.46̄ + 0.6857x̂
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Intuition: OLS fit always runs through
point (x̄ , ȳ)
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Ex.: β̂0 = 3.6̄− 0.627 ∗ 3.5 = 1.46̄
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Correlation Regression

Systematic versus
unsystematic components

Systematic: Regression line (slope)
Linear regression estimates the
conditional means of the population data
(i.e., E [Y |X ])

Unsystematic: Error term is the
deviation of observations from the line

The difference between each value yi and
ŷi is the residual : ei
OLS produces an estimate of β that
minimizes the residual sum of squares
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Fundamental randomness

Measurement error

Omitted variables
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Correlation Regression

Minimum Mathematical
Requirements

1 Do we need variation in X?

Yes, otherwise dividing by zero

2 Do we need variation in Y ?
No, β̂1 can equal zero (Cor(X ,Y ) = 0)

3 How many observations do we need?

n ≥ k , where k is number of parameters
to be estimated

4 Can we have highly correlated
regressors?

Generally no (due to multicollinearity)
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Correlation/Regression
Equivalence

Definition: Corr(x , y) = r̂x ,y = Cov(x ,y)
(n−1)sx sy

Slope β̂1 and correlation r̂x ,y are simply
different scalings of Cov(x , y)

R2 = r̂ 2
x ,y = SSE

SST = 1− SSR
SST
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Are Estimates Any Good?

1 Works mathematically

2 Linear relationship between X and Y

3 X is measured without error

4 No missing data (or MCAR)

5 No confounding (next week)



Correlation Regression

Are Estimates Any Good?

1 Works mathematically

2 Linear relationship between X and Y

3 X is measured without error

4 No missing data (or MCAR)

5 No confounding (next week)



Correlation Regression

Linear Relationship

If linear, no problems

If non-linear, we need to transform
Power terms (e.g., x 2, x 3)
log (e.g., log(x))
Other transformations
If categorical: convert to set of indicators
Multivariate interactions (next week)



Correlation Regression

Coefficient Interpretation

Four types of variables:
1 Indicator (0,1)
2 Categorical
3 Ordinal
4 Interval

How do we interpret a coefficient on
each of these types of variables?
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Interpretation: Indicator

y = β̂0 + β̂1x + e

β0 is the estimate of ȳ when x = 0

β1 is the difference: ȳx=1 − ȳx=0
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Interpretation: Categorical
y = β̂0 + β̂1xx=1 + β̂2xx=2 + · · · + e

β0 is the estimate of ȳ when x = 0

β1 is the difference: ȳx=1 − ȳx=0

β2 is the difference: ȳx=2 − ȳx=0

Need to select one category as the
reference category !



Correlation Regression

Interpretation: Interval

y = β̂0 + β̂1x + e

β0 is the estimate of ȳ when x = 0

β1 is the slope of the relationship
between x and y

Slope is constant across full domain of x
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Interpretation: Ordinal

Two options:
1 y = β̂0 + β̂1x + e
2 y = β̂0 + β̂1xx=1 + β̂2xx=2 + · · ·+ e

Have to choose whether to treat an
ordinal variable as categorical or interval
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Questions?
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What type of x variable is involved and how
do we interpret the coefficient(s) on x for
each of the following scenarios?

1 Body Mass Index (BMI) regressed on height
2 Monthly income ($) regressed on gender
3 Years of schooling regressed on birth region
4 Feeling thermometer toward Theresa May

regressed on party affiliation
5 Weekly hours worked regressed on civil service

pay grade
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OLS Minimizes SSR
Total Sum of Squares (SST):∑n

i=1(yi − ȳ)2

We can partition SST into two parts
(ANOVA):

Explained Sum of Squares (SSE)
Residual Sum of Squares (SSR)

SST = SSE + SSR

OLS is the line with the lowest SSR
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RMSE (σ)
Definition: σ̂ =

√
SSR
n−p , where p is

number of parameters estimated
Interpretation:

How far, on average, are the observed y
values from their corresponding fitted
values ŷ
sd(y) is how far, on average, a given yi is
from ȳ
σ is how far, on average, a given yi is
from ŷi

Units: same as y (range 0 to sd(y))
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