Getting to Regression: The Workhorse of Quantitative Political Analysis

Department of Government London School of Economics and Political Science

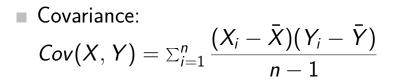
Regression

1 Correlation

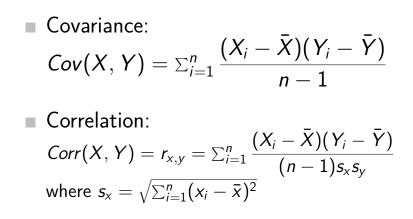
Regression

1 Correlation

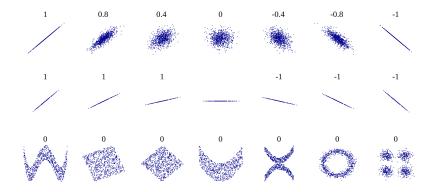
Correlation as Measure of Bivariate Relationship



Correlation as Measure of Bivariate Relationship



Correlation is linear!



Source: Wikimedia

Guess the Correlation!

 Go to: http://guessthecorrelation.com/
 Play a few rounds

Regression

1 Correlation

 Definition: a statistical method for measuring the relationships between one variable and many other variables

- Definition: a statistical method for measuring the relationships between one variable and many other variables
- Uses of Regression
 - 1 Description
 - 2 Prediction
 - 3 Causal Inference

- Definition: a statistical method for measuring the relationships between one variable and many other variables
- Uses of Regression
 - 1 Description
 - 2 Prediction
 - 3 Causal Inference

Ordinary least squares (OLS) regression

Interpretations of OLS

Interpretations of OLS

- **1** Line (or surface) of best fit
- **2** Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)

Interpretations of OLS

- **1** Line (or surface) of best fit
- **2** Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)
- ⁴ Estimating unit-level causal effect

- Y is continuous
- X is a randomized treatment indicator/dummy (0, 1)
- How do we know if the X had an effect on Y?

- Y is continuous
- X is a randomized treatment indicator/dummy (0,1)
- How do we know if the X had an effect on Y?
- Look at outcome mean-difference:
 E[Y|X = 1] E[Y|X = 0]

Mean difference
 (E[Y|X = 1] - E[Y|X = 0])
 is the regression line slope

Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

- Mean difference
 (E[Y|X = 1] E[Y|X = 0])
 is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$
 - $\Delta Y = E[Y|X = 1] E[Y|X = 0]$ • $\Delta X = 1 - 0 = 1$

Three Equations

1 Population:

$$Y = \beta_0 + \beta_1 X (+\epsilon)$$

Three Equations

1 Population:

$$Y = \beta_0 + \beta_1 X \ (+\epsilon)$$

2 Sample estimate: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + e$

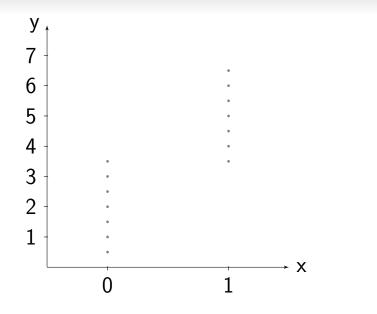
Three Equations

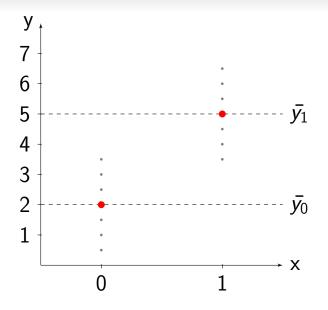
1 Population:

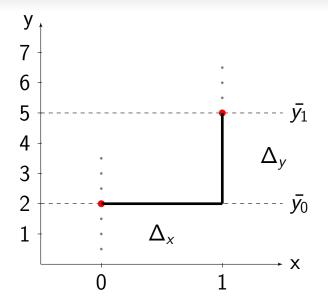
$$Y = \beta_0 + \beta_1 X (+\epsilon)$$

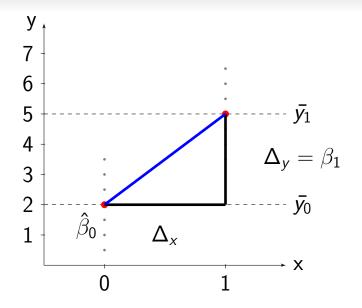
2 Sample estimate:
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

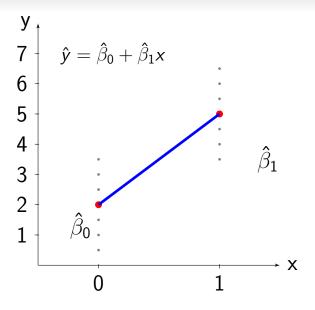
$$egin{aligned} y_i &= \hat{eta}_0 + \hat{eta}_1 x_i + e_i \ &= ar{y}_{0i} + (y_{1i} - y_{0i}) x_i + (y_{0i} - ar{y}_{0i}) \end{aligned}$$

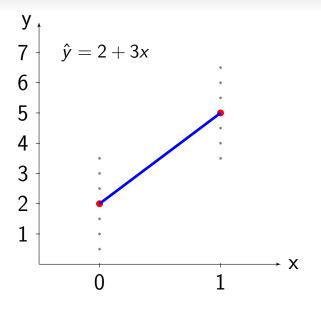


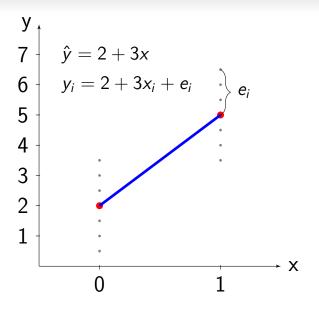












Regression

Questions?

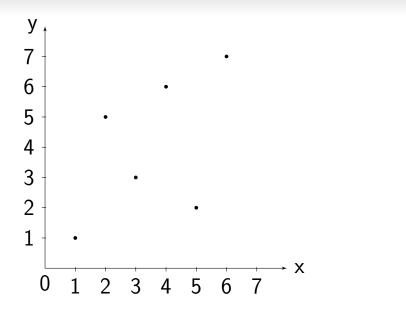
Continuous *X*

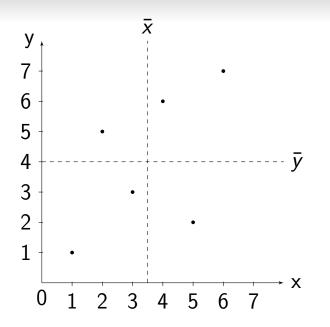
- If x is continuous, calculation is more complicated
- Rather than \(\beta_1\) being the mean-difference in outcomes, it is the slope across all values of x

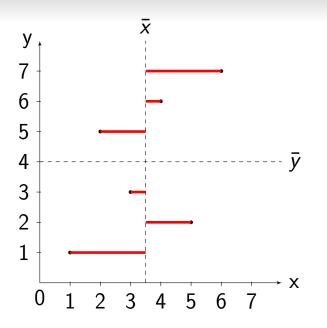
$$\hat{\beta}_1 = Cov(x, y) / Var(x)$$

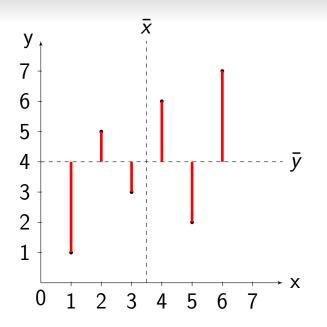
Calculations

Xi	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
1	1	?	?	?	?
2	5	?	?	?	?
3	3	?	?	?	?
4	6	?	?	?	?
5	2	?	?	?	?
6	7	?	?	?	?
x	ÿ			Cov(x,y)	Var(x)









Calculations

Xi	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
1	1	?	?	?	?
2	5	?	?	?	?
3	3	?	?	?	?
4	6	?	?	?	?
5	2	?	?	?	?
6	7	?	?	?	?
x	ÿ			Cov(x,y)	Var(x)

Calculations

If x is continuous, calculation is more complicated: $\widehat{\beta}_1 = Cov(x, y) / Var(x)$

Xi	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
1	1	$-2.\bar{6}$	-3	-6.6 <u>6</u>	6.25
2	5	$-1.\bar{3}$	+1	-2.00	2.25
3	3	$-0.\overline{6}$	-1	$-0.3\bar{3}$	0.25
4	6	$+0.\bar{3}$	+2	$-0.1\overline{6}$	0.25
5	2	$+1.\overline{6}$	-2	-2.50	2.25
6	7	$+2.\bar{3}$	+3	$-8.3\bar{3}$	6.25
3.5	3.6			11	17.5

Calculations

If x is continuous, calculation is more complicated: $\widehat{\beta}_1 = Cov(x, y)/Var(x) = 11/17.5 = 0.627$

Xi	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
1	1	$-2.\bar{6}$	-3	$-6.6\overline{6}$	6.25
2	5	$-1.\bar{3}$	+1	-2.00	2.25
3	3	$-0.\overline{6}$	-1	$-0.3\bar{3}$	0.25
4	6	$+0.\bar{3}$	+2	$-0.1\overline{6}$	0.25
5	2	$+1.\overline{6}$	-2	-2.50	2.25
6	7	$+2.\bar{3}$	+3	$-8.3\bar{3}$	6.25
3.5	3.6			11	17.5

Regression

Intercept $\hat{\beta}_0$

Simple formula: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Intercept $\hat{\beta}_0$

Simple formula: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Intuition: OLS fit always runs through point (\bar{x}, \bar{y})

Intercept $\hat{\beta}_0$

Simple formula: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Intuition: OLS fit always runs through point (\bar{x}, \bar{y})

• Ex.: $\hat{\beta}_0 = 3.\overline{6} - 0.627 * 3.5 = 1.4\overline{6}$

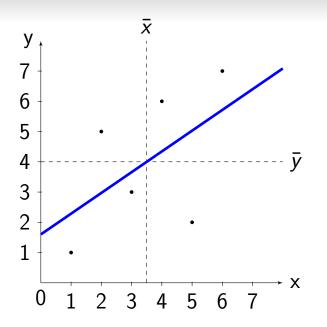
Intercept $\hat{\beta}_0$

Simple formula: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Intuition: OLS fit always runs through point (\bar{x}, \bar{y})

• Ex.:
$$\hat{\beta}_0 = 3.\bar{6} - 0.627 * 3.5 = 1.4\bar{6}$$

• $\hat{y} = 1.4\bar{6} + 0.6857\hat{x}$



Systematic versus unsystematic components

Systematic versus unsystematic components

Systematic: Regression line (slope)
 Linear regression estimates the conditional means of the population data (i.e., *E*[*Y*|*X*])

Systematic versus unsystematic components

Systematic: Regression line (slope)
 Linear regression estimates the conditional means of the population data (i.e., *E*[*Y*|*X*])

- Unsystematic: Error term is the deviation of observations from the line
 - The difference between each value y_i and ŷ_i is the residual: e_i
 - OLS produces an estimate of *β* that minimizes the *residual sum of squares*

Why are there residuals?

Why are there residuals?

Fundamental randomness

Why are there residuals?

Fundamental randomness

Measurement error

Why are there residuals?

Fundamental randomness

- Measurement error
- Omitted variables

1 Do we need variation in X?

Do we need variation in X? Yes, otherwise dividing by zero

Do we need variation in X? Yes, otherwise dividing by zero

Do we need variation in Y?
 No, β₁ can equal zero (Cor(X, Y) = 0)

Do we need variation in X? Yes, otherwise dividing by zero

Do we need variation in Y?
 No, β₁ can equal zero (Cor(X, Y) = 0)

Do we need variation in X?
 Yes, otherwise dividing by zero

- Do we need variation in Y?
 No, β₁ can equal zero (Cor(X, Y) = 0)
- B How many observations do we need?

Do we need variation in X?
 Yes, otherwise dividing by zero

- Do we need variation in Y?
 No, β₁ can equal zero (Cor(X, Y) = 0)
- B How many observations do we need?
 n ≥ k, where k is number of parameters to be estimated

Correlation/Regression Equivalence

Definition:
$$Corr(x, y) = \hat{r}_{x,y} = \frac{Cov(x,y)}{(n-1)s_xs_y}$$

Slope $\hat{\beta}_1$ and correlation $\hat{r}_{x,y}$ are simply different scalings of Cov(x, y)

Correlation/Regression Equivalence

Definition:
$$Corr(x, y) = \hat{r}_{x,y} = \frac{Cov(x,y)}{(n-1)s_xs_y}$$

Slope $\hat{\beta}_1$ and correlation $\hat{r}_{x,y}$ are simply different scalings of Cov(x, y)

$$R^2 = \hat{r}_{x,y}^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

Regression

Questions about OLS?

Are Estimates Any Good?

Are Estimates Any Good?

- 1 Works mathematically
- 2 Linear relationship between X and Y
- $\mathbf{3}$ X is measured without error
- 4 No missing data (or MCAR)
- 5 No confounding (next week)

Linear Relationship

If linear, no problems

- If non-linear, we need to transform
 - Power terms (e.g., x^2 , x^3)
 - $\log (e.g., log(x))$
 - Other transformations
 - If categorical: convert to set of indicators
 - Multivariate interactions (next week)

Coefficient Interpretation

Four types of variables:

- 1 Indicator (0,1)
- 2 Categorical
- 3 Ordinal
- 4 Interval
- How do we interpret a coefficient on each of these types of variables?

Interpretation: Indicator

$$y = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

•
$$\beta_1$$
 is the difference: $\bar{y}_{x=1} - \bar{y}_{x=0}$

Interpretation: Categorical

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_{x=1} + \hat{\beta}_2 x_{x=2} + \dots + e$$

• β_0 is the estimate of \bar{y} when x = 0

- β_1 is the difference: $\bar{y}_{x=1} \bar{y}_{x=0}$
- β_2 is the difference: $\bar{y}_{x=2} \bar{y}_{x=0}$
- Need to select one category as the reference category!

Interpretation: Interval

$$y = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

- β_0 is the estimate of \bar{y} when x = 0
- β₁ is the slope of the relationship between x and y
 - Slope is constant across full domain of x

Interpretation: Ordinal

Two options:
1
$$y = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

2 $y = \hat{\beta}_0 + \hat{\beta}_1 x_{x=1} + \hat{\beta}_2 x_{x=2} + \dots + e$

 Have to choose whether to treat an ordinal variable as *categorical* or *interval*

Regression

Questions?

What type of x variable is involved and how do we interpret the coefficient(s) on x for each of the following scenarios?

- 1 Body Mass Index (BMI) regressed on height
- 2 Monthly income (\$) regressed on gender
- 3 Years of schooling regressed on birth region
- 4 Feeling thermometer toward Theresa May regressed on party affiliation
- 5 Weekly hours worked regressed on civil service pay grade

Regression

OLS Minimizes SSR

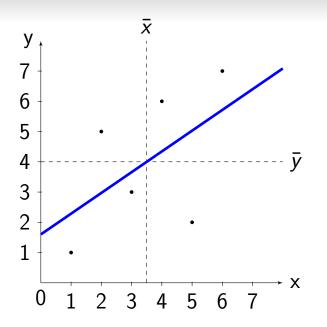
Total Sum of Squares (SST): $\sum_{i=1}^{n} (y_i - \bar{y})^2$

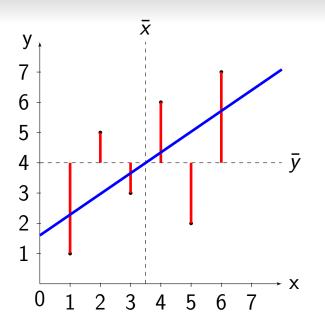
We can partition SST into two parts (ANOVA):

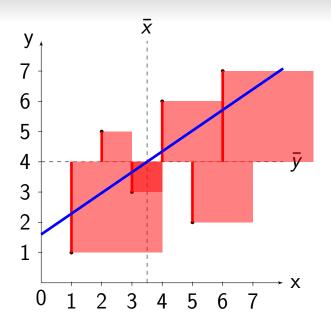
Explained Sum of Squares (SSE)Residual Sum of Squares (SSR)

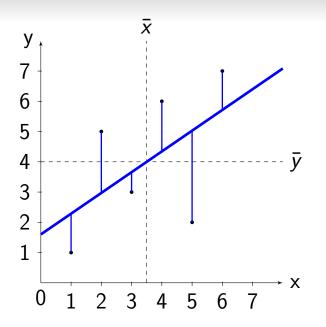
 $\blacksquare SST = SSE + SSR$

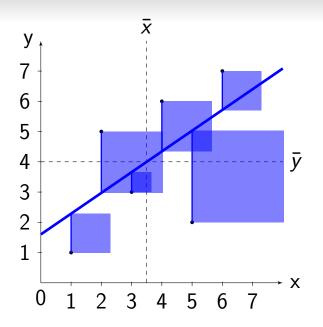
OLS is the line with the lowest SSR

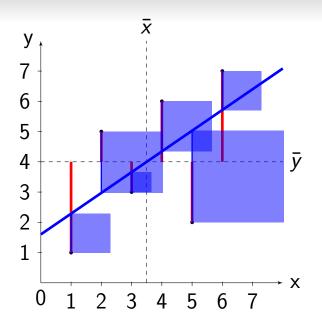


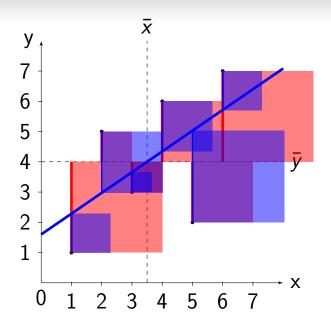












RMSE (σ)

- Definition: \$\hlowsymbol{\sigma} = \sqrt{\frac{SSR}{n-p}}\$, where \$p\$ is number of parameters estimated
 Interpretation:
 - How far, on average, are the observed y values from their corresponding fitted values ŷ
 - *sd*(*y*) is how far, on average, a given *y_i* is from *ȳ*
 - σ is how far, on average, a given y_i is from ŷ_i
- Units: same as y (range 0 to sd(y))

Regression