Matching \& Regression: Accounting for Rival Explanations

Department of Government
London School of Economics and Political Science

1 Regression, Briefly

2 Matching and Conditioning

3 Multiple Regression

1 Regression, Briefly

2 Matching and Conditioning

3 Multiple Regression

Uses of Regression

1 Description

2 Prediction

3. Causal Inference

Mathematically, regression. . .

... describes multivariate relationships in a sample of data points

Mathematically, regression. . .

- ... describes multivariate relationships in a sample of data points
- ... depending on sampling procedure, estimates those relationships in the population

Mathematically, regression. . .

- ... describes multivariate relationships in a sample of data points
- ... depending on sampling procedure, estimates those relationships in the population
- . . . depending on model fit, provides a way to predict outcome values for new cases

Mathematically, regression. . .

- ... describes multivariate relationships in a sample of data points
- ... depending on sampling procedure, estimates those relationships in the population
- . . . depending on model fit, provides a way to predict outcome values for new cases
- ... depending on model completeness, provides inferences about the effect of X on Y

1 Regression, Briefly

2 Matching and Conditioning

3 Multiple Regression

Causal inference is about comparing an observed outcome to a counterfactual, "potential outcome" for the same cases

Regression provides a "statistical solution" to the fundamental problem of causal inference (Holland)

An Example

- For example, if we think smoking might cause lung cancer, how would we know?
- How would we know if smoking caused lung cancer for an individual who smoked?
- What's the relevant counterfactual?
- How would we know if smoking causes lung cancer on average across many individuals?
- What's the relevant counterfactual?

Confounding

- A source of "endogeneity"
- Synonyms: selection bias, omitted variable bias
- In lay terms: the (non)correlation between X and Y does not reflect a causal relationship between X and Y are related for other reasons

Most commonly: Some Z causes both X and Y

Addressing Confounding

Addressing Confounding

${ }_{1}$ Correlate a "putative" cause (X) and an outcome (Y)

Addressing Confounding

1 Correlate a "putative" cause (X) and an outcome (Y)
2. Identify all possible confounds (Z)

Addressing Confounding

1 Correlate a "putative" cause (X) and an outcome (Y)
2. Identify all possible confounds (Z)

3 "Condition" on all confounds

- Calculate correlation between X and Y at each combination of levels of \mathbf{Z}

Mill's Method of Difference

If an instance in which the phenomenon under investigation occurs, and an instance in which it does not occur, have every circumstance save one in common, that one occurring only in the former; the circumstance in which alone the two instances differ, is the effect, or cause, or an necessary part of the cause, of the phenomenon.

Smoking Example

Smoking Example

1 Partition sample into "smokers" $(X=1)$ and "non-smokers" $(X=0)$

Smoking Example

1 Partition sample into "smokers" $(X=1)$ and "non-smokers" $(X=0)$
2. Identify possible confounds

- Sex
- Parental smoking
- etc.

Sex

Environment

/
Parental Smoking

Sex

Environment

Smoking \longrightarrow Cancer

Parental Smoking

Smoking Example

1 Partition sample into "smokers" $(X=1)$ and "non-smokers" $(X=0)$
2. Identify possible confounds

- Sex
- Parental smoking
- etc.

Smoking Example

1 Partition sample into "smokers" ($X=1$) and "non-smokers" $(X=0)$
2. Identify possible confounds

- Sex
- Parental smoking
- etc.

3 Estimate difference in cancer rates between smokers and non-smokers within each group of covariates

Example I

X Y (Cancer)
 Smokers
 0.15
 Non-smokers
 0.05

$$
\begin{aligned}
A T E & =\bar{Y}_{X=1}-\bar{Y}_{X=0} \\
& =0.15-0.05 \\
& =0.10
\end{aligned}
$$

Example II

$$
\begin{array}{llr}
Z_{1}(\text { Sex }) & X & Y \text { (Cancer) } \\
0 & \text { Smokers } & \ldots \\
0 & \text { Non-smokers } & \ldots \\
1 & \text { Smokers } & \ldots \\
1 & \text { Non-smokers } & \ldots
\end{array}
$$

Example III

Z_{2} (Parent)	$Z_{1}($ Sex $)$	X	Y (Cancer)
0	0	Smokers	\ldots
0	0	Non-smokers	\ldots
0	1	Smokers	\ldots
0	1	Non-smokers	\ldots
1	0	Smokers	\ldots
1	0	Non-smokers	\ldots
1	1	Smokers	\ldots
1	1	Non-smokers	\ldots

$$
\begin{aligned}
\text { ATE }= & p_{\text {Male, Parent non-smoker }} *\left(\bar{Y}_{X=1, Z_{1}=1, z_{2}=0}-\bar{Y}_{X=0, Z_{1}=1, Z_{2}=0}\right)+ \\
& p_{\text {Female, Parent non-smoker }} *\left(\bar{Y}_{X=1, z_{1}=0, z_{2}=0}-\bar{Y}_{X=0, Z_{1}=0, Z_{2}=0}\right)+ \\
& p_{\text {Male, Parent smoker }} *\left(\bar{Y}_{X=1, Z_{1}=1, Z_{2}=1}-\bar{Y}_{X=0, Z_{1}=1, Z_{2}=1}\right)+ \\
& p_{\text {Female, Parent smoker }} *\left(\bar{Y}_{X=1, Z_{1}=0, Z_{2}=1}-\bar{Y}_{X=0, Z_{1}=0, z_{2}=1}\right)+
\end{aligned}
$$

Exact Matching

- Repeat this partitioning of the space into "strata" (or "subclasses")
- Requires at least one "treated" and one "untreated" case at every combination of every covariate
- More convenient notation:

$$
\begin{aligned}
\text { Naive Effect } & =\bar{Y}_{X=1}-\bar{Y}_{X=0} \\
\text { ATE } & =\bar{Y}_{X=1, \mathbf{Z}}-\bar{Y}_{X=0, \mathbf{Z}}
\end{aligned}
$$

Note that matching is just a version of Mill's method of difference used for a large number of cases.

Omitted Variables

In the language of potential outcomes:
$\underbrace{E\left[Y_{i} \mid X_{i}=1\right]-E\left[Y_{i} \mid X_{i}=0\right]=}$
Naive Effect
$\underbrace{E\left[Y_{1 i} \mid X_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}=1\right]}_{\text {Treatment Effect on Treated (ATT) }}+\underbrace{E\left[Y_{0 i} \mid X_{i}=1\right]-E\left[Y_{0 i} \mid X_{i}=0\right]}_{\text {Selection Bias }}$
By conditioning, we assert that the potential (control) outcomes are equivalent between treated and non-treated cases, so the difference we observe between treatment and control outcomes is only the average causal effect of the "treatment".

Common Conditioning Strategies

Common Conditioning Strategies

${ }^{11}$ Condition on nothing ("naive effect")

Common Conditioning Strategies

${ }^{11}$ Condition on nothing ("naive effect")
2 Condition on some variables

Common Conditioning Strategies

${ }^{11}$ Condition on nothing ("naive effect")
2. Condition on some variables

3 Condition on all observables

Common Conditioning Strategies

${ }_{1}$ Condition on nothing ("naive effect")
2. Condition on some variables

3 Condition on all observables

Which of these are good strategies?

Caveat!

- We can only condition on observed confounding variables
- If we think other confounds might exist, but are unobservable, no form of conditioning can help us
- Example: Tobacco companies argued that an unknown genetic factor was a common cause of both smoking addiction and lung cancer

Post-treatment Bias

- We usually want to know the total effect of a cause
- If we include a mediator, D, of the $X \rightarrow Y$ relationship, the coefficient on X :
- Only reflects the direct effect
- Excludes the indirect effect of X through D
- So don't control for mediators!

Post-Treatment Bias

Sex

Environment

Smoking \longrightarrow Tar \longrightarrow Cancer

Parental
Smoking

Other factors

Post-Treatment Bias

D (Tar) $X \quad Y$ (Cancer)
0 Smokers
0 Non-smokers
1 Smokers
1 Non-smokers

Post-Treatment Bias

D (Tar) X Y (Cancer)

0	Smokers
0	Non-smokers
1	Smokers
1	Non-smokers

Imagine:

$$
\begin{aligned}
A T E_{\mathrm{Tar}} & =\left(\bar{D}_{X=1}-\bar{D}_{X=0}\right)=1 \\
A T E_{\text {Cancer of Tar }} & =\left(\bar{Y}_{D=1}-\bar{Y}_{D=0}\right)=1
\end{aligned}
$$

Post-Treatment Bias

D (Tar) X Y (Cancer)

0	Smokers
0	Non-smokers
1	Smokers
1	Non-smokers

Imagine:

$$
\begin{aligned}
A T E_{\mathrm{Tar}} & =\left(\bar{D}_{X=1}-\bar{D}_{X=0}\right)=1 \\
A T E_{\text {Cancer of Tar }} & =\left(\bar{Y}_{D=1}-\bar{Y}_{D=0}\right)=1
\end{aligned}
$$

Post-Treatment Bias

$D($ Tar $)$	X	Y (Cancer)
0	Smokers	\ldots
0	Non-smokers	\ldots
1	Smokers	\ldots
1	Non-smokers	\ldots

Imagine:

$$
\begin{aligned}
A T E_{\text {Tar }}= & \left(\bar{D}_{X=1}-\bar{D}_{X=0}\right)=1 \\
A T E_{\text {Cancer of Tar }}= & \left(\bar{Y}_{D=1}-\bar{Y}_{D=0}\right)=1 \\
A T E_{\text {Cancer of Smoking }}= & p_{D=1}\left(\bar{Y}_{X=1, D=1}-\bar{Y}_{X=0, D=1}\right)+ \\
& p_{D=0}\left(\bar{Y}_{X=1, D=0}-\bar{Y}_{X=0, D=0}\right)
\end{aligned}
$$

Matching and Conditioning

1 Regression, Briefly

2 Matching and Conditioning

3 Multiple Regression

Multiple Regression

- Regression achieves the same objectives as matching
- Estimate average causal of a variable conditional on other variables

Multiple Regression

- Regression achieves the same objectives as matching
- Estimate average causal of a variable conditional on other variables
- Requires a linear relationship between all RHS (X variables) and Y
- Can be a set of binary indicator variables

Multiple Regression

- Regression achieves the same objectives as matching
- Estimate average causal of a variable conditional on other variables
- Requires a linear relationship between all RHS (X variables) and Y
- Can be a set of binary indicator variables
- We interpret coefficient estimates as marginal average treatment effects

From Line to Surface I

- In simple regression, we estimate a line
- In multiple regression, we estimate a surface
- Each coefficient is the marginal effect, all else constant (at mean)
- This can be hard to picture in your mind

From Line to Surface II

$$
\underbrace{y \quad \hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x}_{x}
$$

From Line to Surface II

From Line to Surface II

Cusack, Iversen, and Soskice

Strength/Threat of Left

Ethno-Linguistic Division

Proportional
Representation
(Other factors)

Testing Rival Hypotheses

- Rival hypotheses can be derived from two (or more) different theories
- We can conduct independent tests of each
- Is there evidence consistent with Hyp 1?
- Is there evidence consistent with Hyp 2?
- Regression allows us to test both simultaneously on the same data
- Is the data more consistent with Hyp 1 or Hyp 2?
- Draw inference about causality and about validity of theories based on data

Cusack, Iversen, and Soskice

Strength/Threat of Left

Ethno-Linguistic Division

Proportional
Representation
(Other factors)

Cusack, Iversen, and Soskice

Business-Labour

Coordination

Proportional Representation

Ethno-Linguistic Division

Cusack, Iversen, and Soskice

Business-Labour

Coordination

Proportional of Left \longrightarrow Representation

Ethno-Linguistic Division

Rival Theories

- Rokkan-Boix:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{1} \text { Threat }+\epsilon \tag{1}
\end{equation*}
$$

	(1)	(2)	(3)	(4)
Dependent Variable:	Replication	Replication as	Replication	Replication as
Average Effective	Using Data	in (1) but with	Using our	in (3) but with
Threshold in	Reported in	19 Cases	Timing and	Dominance-based
1919-1939	Boix (1999)			Threat Score
Constant	31.30^{*}	32.79*	29.64*	$24.54{ }^{*}$
	(4.68)	(4.93)	(5.48)	(5.82)
Threat	$-.134^{*}$	$-.143^{*}$	- 101	-. 029
	(.049)	(.052)	(.059)	(.062)
Ethnic-linguistic division	-33.16^{*}	$-35.28 *$	$-35.18{ }^{*}$	-33.92
X area dummy	(14.75)	(14.74)	(16.48)	(17.84)
Adj. R-squared	. 33	. 37	. 22	. 09
SEE	10.57	10.50	11.71	12.67
Number of Obs.	22	19	19	19

Aside: Interpretation

- All our interpretation rules from earlier still apply in a multivariate regression
- Now we interpret a coefficient as an effect "all else constant"
- Generally, not good to give all coefficients a causal interpretation
- Think "forward causal inference"
- We're interested in the $X \rightarrow Y$ effect
- All other coefficients are there as "controls"

Rival Theories

- Rokkan-Boix:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{1} \text { Threat }+\epsilon \tag{1}
\end{equation*}
$$

Rival Theories

- Rokkan-Boix:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{1} \text { Threat }+\epsilon \tag{1}
\end{equation*}
$$

Cusack, Iversen, and Soskice:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{2} \text { Coordination }+\epsilon \tag{2}
\end{equation*}
$$

TABLE 5. Preindustrial Coordination, Disproportionality of Representation, and Electoral System (Standard Errors in Parentheses) Dependent Variable: Effective Threshold						
	(1)	(2)	(3)	(4)	(5)	(6)
Constant	$\begin{gathered} 26.35 \\ (7.73) \end{gathered}$	$\begin{gathered} 31.85^{*} \\ (3.36) \end{gathered}$	$\begin{aligned} & 31.99^{*} \\ & (2.23) \end{aligned}$	$\begin{aligned} & 26.71^{*} \\ & (6.97) \end{aligned}$	$\begin{array}{r} -1.90 \\ (8.90) \end{array}$	$\begin{aligned} & 13.79 \\ & (8.74) \end{aligned}$
Threat (dominance-based measure)	$\begin{array}{r} -0.06 \\ (0.10) \end{array}$	$\begin{aligned} & 0.02 \\ & (0.04) \end{aligned}$	(2.23)	$\begin{aligned} & -.22 \\ & (0.13) \end{aligned}$	$\begin{array}{r} -0.16 \\ (0.09) \end{array}$	(8.74)
Coordination	-	$\begin{array}{r} -5.30^{*} \\ (0.66) \end{array}$	$\begin{gathered} -5.46^{*} \\ (0.63) \end{gathered}$	-	-	-
Pre-1900 Disproportionality	-	-	-	-	$\begin{gathered} 0.34^{*} \\ (0.09) \end{gathered}$	$\begin{array}{r} 0.37^{*} \\ (0.11) \end{array}$
Ethnic-linguistic division X area dummy	$\begin{gathered} -36.90 \\ (20.85) \end{gathered}$	$\begin{gathered} -7.10 \\ (9.63) \end{gathered}$	-	$\begin{gathered} -32.29 \\ (22.75) \end{gathered}$	$\begin{array}{r} -28.39 \\ (14.65) \end{array}$	-
Adj. R-squared	0.07	0.83	0.81	0.15	0.65	0.51
SEE	13.47	5.74	5.99	13.60	8.73	10.30
No. of observations	17	17	18	12	12	12

Rival Theories

- Rokkan-Boix:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{1} \text { Threat }+\epsilon \tag{1}
\end{equation*}
$$

Cusack, Iversen, and Soskice:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{2} \text { Coordination }+\epsilon \tag{2}
\end{equation*}
$$

Rival Theories

- Rokkan-Boix:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{1} \text { Threat }+\epsilon \tag{1}
\end{equation*}
$$

- Cusack, Iversen, and Soskice:

$$
\begin{equation*}
P R=\beta_{0}+\beta_{2} \text { Coordination }+\epsilon \tag{2}
\end{equation*}
$$

- Combined test:
$P R=\beta_{0}+\beta_{1}$ Threat $+\beta_{2}$ Coordination $+\epsilon$

TABLE 5. Preindustrial Coordination, Disproportionality of Representation, and Electoral System (Standard Errors in Parentheses) Dependent Variable: Effective Threshold						
	(1)	(2)	(3)	(4)	(5)	(6)
Constant	$\begin{gathered} 26.35 \\ (7.73) \end{gathered}$	$\begin{gathered} 31.85^{*} \\ (3.36) \end{gathered}$	$\begin{aligned} & 31.99^{*} \\ & (2.23) \end{aligned}$	$\begin{aligned} & 26.71^{*} \\ & (6.97) \end{aligned}$	$\begin{array}{r} -1.90 \\ (8.90) \end{array}$	$\begin{aligned} & 13.79 \\ & (8.74) \end{aligned}$
Threat (dominance-based measure)	$\begin{array}{r} -0.06 \\ (0.10) \end{array}$	$\begin{aligned} & 0.02 \\ & (0.04) \end{aligned}$	(2.23)	$\begin{aligned} & -.22 \\ & (0.13) \end{aligned}$	$\begin{array}{r} -0.16 \\ (0.09) \end{array}$	(8.74)
Coordination	-	$\begin{array}{r} -5.30^{*} \\ (0.66) \end{array}$	$\begin{gathered} -5.46^{*} \\ (0.63) \end{gathered}$	-	-	-
Pre-1900 Disproportionality	-	-	-	-	$\begin{gathered} 0.34^{*} \\ (0.09) \end{gathered}$	$\begin{array}{r} 0.37^{*} \\ (0.11) \end{array}$
Ethnic-linguistic division X area dummy	$\begin{gathered} -36.90 \\ (20.85) \end{gathered}$	$\begin{gathered} -7.10 \\ (9.63) \end{gathered}$	-	$\begin{gathered} -32.29 \\ (22.75) \end{gathered}$	$\begin{array}{r} -28.39 \\ (14.65) \end{array}$	-
Adj. R-squared	0.07	0.83	0.81	0.15	0.65	0.51
SEE	13.47	5.74	5.99	13.60	8.73	10.30
No. of observations	17	17	18	12	12	12

	(1)	(2)
stthroct2	$\begin{gathered} 0.047 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.052) \end{gathered}$
coordds	$\begin{gathered} -6.019^{* * *} \\ (0.706) \end{gathered}$	$\begin{gathered} -5.284^{* * *} \\ (1.008) \end{gathered}$
dispro2	$\begin{gathered} 0.042 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.083 \\ (0.066) \end{gathered}$
fragdum	$\begin{gathered} 3.624 \\ (8.239) \end{gathered}$	$\begin{gathered} 0.123 \\ (8.911) \end{gathered}$
Constant	$\begin{gathered} 28.239^{* * *} \\ (5.866) \end{gathered}$	$\begin{gathered} 25.211^{* * *} \\ (6.565) \end{gathered}$
Observations	13	12
R^{2}	0.947	0.948
Adjusted R^{2}	0.920	0.919
Residual Std. Error	4.217 (df = 8)	$4.207(\mathrm{df}=7)$
F Statistic	$35.673^{* * *}(\mathrm{df}=4 ; 8)$	$32.084^{* * *}(\mathrm{df}=4 ; 7)$
Note:	* $\mathrm{p}<0$	${ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$

So the effect found by Rokkan and Boix was confounded by business-labour coordination.

What was happening when they omitted the coordination variable?

Omitted Variable Bias

- We want to estimate:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\epsilon
$$

- We actually estimate:

$$
\begin{aligned}
\tilde{y} & =\tilde{\beta}_{0}+\tilde{\beta}_{1} x+\epsilon \\
& =\tilde{\beta}_{0}+\tilde{\beta}_{1} x+(0 * z)+\epsilon \\
& =\tilde{\beta}_{0}+\tilde{\beta}_{1} x+\nu
\end{aligned}
$$

- Bias: $\tilde{\beta}_{1}=\hat{\beta}_{1}+\hat{\beta}_{2} \tilde{\delta}_{1}$, where $\tilde{z}=\tilde{\delta}_{0}+\tilde{\delta}_{1} x$

But have Cusack, Iversen, and Soskice considered all possible confounds?

| TABLE 4. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Indicators of Economic Structure and Organization ca. 1900

	(1) Guild Tradition and Strong Local Economies	(2) Widespread Rural Cooperatives	(3) High Employer Coordination	(4) Industry/ Centralized vs. Craft/ Fragmented Unions	(5) Large SkillBased Expor Sector	(6) Coordination Index
Austrana	No	No	No	NO	NO	0
Canada	No	No	No	No	No	0
Ireland	No	No	No	No	No	0
New Zealand	No	No	No	No	No	0
United Kingdom	No	No	No	No	No	0
United States	No	No	No	No	No	0
France	Yes	No	No	No	No	1
Japan	Yes	No	Yes	No	No	2
Italy	Yes	Yes	Yes	No	No	3
Finland	Yes	Yes	No	No	Yes	3
Austria	Yes	Yes	Yes	Yes	Yes	5
Belgium	Yes	Yes	Yes	Yes	Yes	5
Denmark	Yes	Yes	Yes	Yes	Yes	5
Germany	Yes	Yes	Yes	Yes	Yes	5
Netherlands	Yes	Yes	Yes	Yes	Yes	5
Switzerland	Yes	Yes	Yes	Yes	Yes	5
Norway	Yes	Yes	Yes	Yes	Yes	5
Sweden	Yes	Yes	Yes	Yes	Yes	5
Sources: By column 1963; Marshall 195 Katzenstein 1985, Note: Additive inde	n: (1) Crouch 1993; 58; Leonardi 2006; ch. 4. x in column (6) sumn	Herrigel (1996): Guinane 2001; marized across	; Hechter and Bru Lewis 1978; (3)-(all indicators with	stein (1980) (2) Crouch 1993; (5) Crouch 1993; Thelen 2004 $\text { 'Yes' = } 1 \text { and 'No' = } 0 \text {. }$	Katzenstein 198 ; Swenson 200	5, ch. 4; Symes 2; Mares 2003;

	(1)	(2)
stthroct2	$\begin{gathered} 0.058 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.043) \end{gathered}$
coordds	$\begin{gathered} -5.556^{* * *} \\ (1.578) \end{gathered}$	$\begin{aligned} & -0.398 \\ & (2.467) \end{aligned}$
dispro2	$\begin{gathered} 0.013 \\ (0.102) \end{gathered}$	$\begin{aligned} & -0.049 \\ & (0.083) \end{aligned}$
fragdum	$\begin{gathered} 4.983 \\ (9.642) \end{gathered}$	$\begin{gathered} 3.366 \\ (7.465) \end{gathered}$
brit	$\begin{gathered} 4.088 \\ (12.258) \end{gathered}$	$\begin{aligned} & 30.412^{*} \\ & (14.469) \end{aligned}$
Constant	$\begin{gathered} 26.911^{* * *} \\ (7.388) \end{gathered}$	$\begin{gathered} 9.390 \\ (9.253) \end{gathered}$
Observations	13	12
R^{2}	0.948	0.970
Adjusted R^{2}	0.910	0.945
Residual Std. Error	$4.472(\mathrm{df}=7)$	3.449 (df = 6)
F Statistic	$25.390^{* * *}(\mathrm{df}=5 ; 7)$	$39.083^{* * *}(\mathrm{df}=5 ; 6)$
Note:	* $\mathrm{p}<$	${ }^{* *} \mathrm{p}<0.05 ;^{* * *} \mathrm{p}<0.01$

Aside: Interpolation/Extrapolation

In prediction, we may want to use our estimated coefficients to predict outcome values for new cases

- Interpolation is prediction within the interval covered by our observed data
- Extrapolation is prediction outside the interval covered by our observed data

Lingering Issues

Lingering Issues

1 Inference to a population

- Inferences from data to population depend on generalizability

Lingering Issues

1 Inference to a population

- Inferences from data to population depend on generalizability

2 Interactions terms

- Allow us to test whether than effect varies across values of other variables

$$
\begin{aligned}
P R & =\beta_{0}+\beta_{1} \text { Threat }+\beta_{2} \text { Coord }+\epsilon \\
& =\beta_{0}+\beta_{1} \text { Threat }+\beta_{2} \text { Coord }+\beta_{3}(\text { Threat } * \text { Coord })+\epsilon
\end{aligned}
$$

Lingering Issues

1 Inference to a population

- Inferences from data to population depend on generalizability

2 Interactions terms

- Allow us to test whether than effect varies across values of other variables

$$
\begin{aligned}
P R & =\beta_{0}+\beta_{1} \text { Threat }+\beta_{2} \text { Coord }+\epsilon \\
& =\beta_{0}+\beta_{1} \text { Threat }+\beta_{2} \text { Coord }+\beta_{3}(\text { Threat } * \text { Coord })+\epsilon
\end{aligned}
$$

3 RHS variables must be collinear

