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Mathematically, regression. . .

. . . describes multivariate relationships in a
sample of data points

. . . depending on sampling procedure,
estimates those relationships in the population

. . . depending on model fit, provides a way to
predict outcome values for new cases

. . . depending on model completeness, provides
inferences about the effect of X on Y
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Causal inference is about comparing an
observed outcome to a counterfactual,
“potential outcome” for the same cases

Regression provides a “statistical solution” to
the fundamental problem of causal inference
(Holland)
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An Example
For example, if we think smoking might cause
lung cancer, how would we know?

How would we know if smoking caused lung
cancer for an individual who smoked?

What’s the relevant counterfactual?

How would we know if smoking causes lung
cancer on average across many individuals?

What’s the relevant counterfactual?
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Confounding
A source of “endogeneity”

Synonyms: selection bias, omitted
variable bias

In lay terms: the (non)correlation
between X and Y does not reflect a
causal relationship between X and Y are
related for other reasons

Most commonly: Some Z causes both X
and Y



Regression Matching and Conditioning Multiple Regression

Addressing Confounding

1 Correlate a “putative” cause (X ) and an
outcome (Y )

2 Identify all possible confounds (Z)

3 “Condition” on all confounds
Calculate correlation between X and Y
at each combination of levels of Z
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Mill’s Method of Difference

If an instance in which the phenomenon under
investigation occurs, and an instance in which it
does not occur, have every circumstance save one in
common, that one occurring only in the former; the
circumstance in which alone the two instances
differ, is the effect, or cause, or an necessary part of
the cause, of the phenomenon.
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Smoking Example

1 Partition sample into “smokers”
(X = 1) and “non-smokers” (X = 0)

2 Identify possible confounds
Sex
Parental smoking
etc.

3 Estimate difference in cancer rates
between smokers and non-smokers
within each group of covariates
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Environment

Other factors
Parental
Smoking
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Example I

X Y (Cancer)
Smokers 0.15
Non-smokers 0.05

ATE = ȲX=1 − ȲX=0

= 0.15− 0.05
= 0.10
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Example II
Z1 (Sex) X Y (Cancer)
0 Smokers . . .
0 Non-smokers . . .
1 Smokers . . .
1 Non-smokers . . .

ATE =pMale ∗ (ȲX=1,Z1=1 − ȲX=0,Z1=1)+
pFemale ∗ (ȲX=1,Z1=0 − ȲX=0,Z1=0)
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Example III
Z2 (Parent) Z1 (Sex) X Y (Cancer)
0 0 Smokers . . .
0 0 Non-smokers . . .
0 1 Smokers . . .
0 1 Non-smokers . . .
1 0 Smokers . . .
1 0 Non-smokers . . .
1 1 Smokers . . .
1 1 Non-smokers . . .

ATE =pMale, Parent non-smoker ∗ (ȲX=1,Z1=1,Z2=0 − ȲX=0,Z1=1,Z2=0)+

pFemale, Parent non-smoker ∗ (ȲX=1,Z1=0,Z2=0 − ȲX=0,Z1=0,Z2=0)+

pMale, Parent smoker ∗ (ȲX=1,Z1=1,Z2=1 − ȲX=0,Z1=1,Z2=1)+

pFemale, Parent smoker ∗ (ȲX=1,Z1=0,Z2=1 − ȲX=0,Z1=0,Z2=1)+
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Exact Matching
Repeat this partitioning of the space
into “strata” (or “subclasses”)
Requires at least one “treated” and one
“untreated” case at every combination
of every covariate
More convenient notation:

Naive Effect = ȲX=1 − ȲX=0

ATE = ȲX=1,Z − ȲX=0,Z
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Note that matching is just a version of Mill’s
method of difference used for a large number

of cases.
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Omitted Variables
In the language of potential outcomes:
E [Yi |Xi = 1]− E [Yi |Xi = 0] =︸ ︷︷ ︸

Naive Effect

E [Y1i |Xi = 1]− E [Y0i |Xi = 1]︸ ︷︷ ︸
Treatment Effect on Treated (ATT)

+ E [Y0i |Xi = 1]− E [Y0i |Xi = 0]︸ ︷︷ ︸
Selection Bias

By conditioning, we assert that the potential (control)
outcomes are equivalent between treated and non-treated
cases, so the difference we observe between treatment and
control outcomes is only the average causal effect of the
“treatment”.
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Common Conditioning
Strategies

1 Condition on nothing (“naive effect”)

2 Condition on some variables

3 Condition on all observables

Which of these are good strategies?
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Caveat!
We can only condition on observed
confounding variables

If we think other confounds might exist,
but are unobservable, no form of
conditioning can help us

Example: Tobacco companies argued
that an unknown genetic factor was a
common cause of both smoking addiction
and lung cancer
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Post-treatment Bias
We usually want to know the total
effect of a cause

If we include a mediator, D, of the
X → Y relationship, the coefficient on
X :

Only reflects the direct effect
Excludes the indirect effect of X
through D

So don’t control for mediators!
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Post-Treatment Bias

Smoking Tar Cancer

Sex
Environment

Other factors
Parental
Smoking
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Post-Treatment Bias
D (Tar) X Y (Cancer)
0 Smokers . . .
0 Non-smokers . . .
1 Smokers . . .
1 Non-smokers . . .

Imagine:
ATETar =(D̄X=1 − D̄X=0) = 1

ATECancer of Tar =(ȲD=1 − ȲD=0) = 1
ATECancer of Smoking =pD=1(ȲX=1,D=1 − ȲX=0,D=1)+

pD=0(ȲX=1,D=0 − ȲX=0,D=0)
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Multiple Regression
Regression achieves the same objectives
as matching

Estimate average causal of a variable
conditional on other variables

Requires a linear relationship between
all RHS (X variables) and Y

Can be a set of binary indicator variables

We interpret coefficient estimates as
marginal average treatment effects
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From Line to Surface I
In simple regression, we estimate a line

In multiple regression, we estimate a
surface

Each coefficient is the marginal effect,
all else constant (at mean)

This can be hard to picture in your mind
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From Line to Surface II

x

y
ŷ = β̂0 + β̂1X
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From Line to Surface II

x

y
ŷ = β̂0 + β̂1X + β̂2Z

z
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Cusack, Iversen, and Soskice

Proportional
Representation

(Other factors)Ethno-Linguistic
Division

Strength/Threat
of Left
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Testing Rival Hypotheses
Rival hypotheses can be derived from two (or
more) different theories

We can conduct independent tests of each
Is there evidence consistent with Hyp 1?
Is there evidence consistent with Hyp 2?

Regression allows us to test both
simultaneously on the same data

Is the data more consistent with Hyp 1 or Hyp 2?

Draw inference about causality and about
validity of theories based on data
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Proportional
Representation

(Other factors)Ethno-Linguistic
Division

Strength/Threat
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Rival Theories
Rokkan–Boix:

PR = β0 + β1Threat + ε (1)

Cusack, Iversen, and Soskice:

PR = β0 + β2Coordination + ε (2)

Combined test:

PR = β0 +β1Threat +β2Coordination +ε (3)
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Aside: Interpretation
All our interpretation rules from earlier
still apply in a multivariate regression
Now we interpret a coefficient as an
effect “all else constant”
Generally, not good to give all
coefficients a causal interpretation

Think “forward causal inference”
We’re interested in the X → Y effect
All other coefficients are there as
“controls”
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(1) (2)
stthroct2 0.047 0.008

(0.035) (0.052)

coordds −6.019∗∗∗ −5.284∗∗∗

(0.706) (1.008)

dispro2 0.042 0.083
(0.052) (0.066)

fragdum 3.624 0.123
(8.239) (8.911)

Constant 28.239∗∗∗ 25.211∗∗∗

(5.866) (6.565)

Observations 13 12
R2 0.947 0.948
Adjusted R2 0.920 0.919
Residual Std. Error 4.217 (df = 8) 4.207 (df = 7)
F Statistic 35.673∗∗∗ (df = 4; 8) 32.084∗∗∗ (df = 4; 7)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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So the effect found by Rokkan and Boix was
confounded by business–labour coordination.

What was happening when they omitted the
coordination variable?
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Omitted Variable Bias
We want to estimate:

Y = β0 + β1X + β2Z + ε

We actually estimate:

ỹ = β̃0 + β̃1x + ε

= β̃0 + β̃1x + (0 ∗ z) + ε

= β̃0 + β̃1x + ν

Bias: β̃1 = β̂1 + β̂2δ̃1, where z̃ = δ̃0 + δ̃1x
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But have Cusack, Iversen, and Soskice
considered all possible confounds?
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(1) (2)
stthroct2 0.058 0.006

(0.048) (0.043)

coordds −5.556∗∗∗ −0.398
(1.578) (2.467)

dispro2 0.013 −0.049
(0.102) (0.083)

fragdum 4.983 3.366
(9.642) (7.465)

brit 4.088 30.412∗

(12.258) (14.469)

Constant 26.911∗∗∗ 9.390
(7.388) (9.253)

Observations 13 12
R2 0.948 0.970
Adjusted R2 0.910 0.945
Residual Std. Error 4.472 (df = 7) 3.449 (df = 6)
F Statistic 25.390∗∗∗ (df = 5; 7) 39.083∗∗∗ (df = 5; 6)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Aside: Interpolation/Extrapolation

In prediction, we may want to use our
estimated coefficients to predict outcome
values for new cases

Interpolation is prediction within the
interval covered by our observed data
Extrapolation is prediction outside the
interval covered by our observed data
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Lingering Issues

1 Inference to a population
Inferences from data to population
depend on generalizability

2 Interactions terms
Allow us to test whether than effect
varies across values of other variables

PR = β0 + β1Threat + β2Coord + ε

= β0 + β1Threat + β2Coord + β3(Threat ∗ Coord) + ε

3 RHS variables must be collinear
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