Statistical Foundations I

Department of Government London School of Economics and Political Science

1 What is an experiment?

2 Treatment Effects

3 Statistical Inference

1 What is an experiment?

2 Treatment Effects

3 Statistical Inference

Principles of causality

- Correlation/Relationship
- 2 Nonconfounding
- 3 Direction ("temporal precedence")

- 4 Mechanism
- 5 Appropriate level of analysis

Principles of causality

- Correlation/Relationship
- 2 Nonconfounding
- **3** Direction ("temporal precedence")

- 4 Mechanism
- Appropriate level of analysis

I Draw causal inferences through *design*

- **I** Draw causal inferences through *design*
- 2 Randomization breaks selection bias and fixes temporal precedence

- **I** Draw causal inferences through *design*
- 2 Randomization breaks selection bias and fixes temporal precedence
- 3 We don't need to "control" for anything

- **I** Draw causal inferences through *design*
- 2 Randomization breaks selection bias and fixes temporal precedence
- 3 We don't need to "control" for anything
- We see "causal effects" in the comparison of experimental groups

Definitions I

The observation of units after, and possibly before, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

Definitions I

A randomized experiment, or randomized control trial (RCT), is:

The observation of units after, and possibly before, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

Definitions I

A randomized experiment, or randomized control trial (RCT), is:

The observation of units after, and possibly before, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

If we manipulate the thing we want to know the effect of (X), and control (i.e., hold constant) everything we do not want to know the effect of (Z), the only thing that can affect the outcome (Y) is X.

Statistical Inference

Definitions II

Definitions II

Unit: A physical object at a particular point in time

Definitions II

Treatment: An intervention, whose effect(s) we wish to assess relative to some other (non-)intervention

Statistical Inference

Definitions II

Outcome: The variable we are trying to explain

Definitions II

Potential outcomes: The outcome value for each unit that we *would observe* if that unit received each treatment

Multiple potential outcomes for each unit, but we only observe one of them

Definitions II

Causal effect: The comparisons between the unit-level potential outcomes under each intervention

This is what we want to know!

Statistical Inference

Example

Unit: Schools in Kenya

Statistical Inference

Example

Outcome: Student learning

Treatment: An additional teacher per class, reducing effective class size

Potential outcomes:

- Knowledge in a "large" class
- Knowledge in a "small class

Causal effect: Difference in knowledge between the two conditions

Units

- Units can be almost anything
- Common units in experimental designs:
 - Individual people
 - Sites (schools, classes, surgeries)
 - Areas (districts, states)
- Units are period-specific
 - Randomization can occur over time

Outcomes

- Experiments can have many outcome concepts/measures
- Quite common to think about just one at a time
- Outcomes can be anything that:
 - Is observable/measurable
 - Can be measured at the level of randomization or lower

Treatments

- Synonyms: manipulation, intervention, factor, condition, cell
- Treatments are operationalizations of independent variables in a causal theory
- A set of treatments generates observable variation in X

Developing Treatments

From theory, we derive testable hypotheses

- Hypotheses are expectations about differences in outcomes across levels of a putatively causal variable
- In an experiment, an hypothesis must be testable by an ATE
- The experimental manipulations induce variation in the causal variable that enable tests of the hypotheses

Example: Framing and Attention¹

- Theory: Presentation of information affects politicians' attention
- Hypothesis:
 - Information framed as a conflict draws more attention from political elites than information not framed as a conflict.
- Manipulation:
 - Control group: Presentation of headline information
 - Treatment group: Same information presented as conflict

Outcome:

How likely are legislators to read full article

¹Walgrave, Sevenans, Van Camp, Loewen (2017) – "What Draws Politicians' Attention? An Experimental Study of Issue Framing and its Effect on Individual Political Elites"

Ex.: Presence/Absence

- Theory: Legislators vote in line with constituents' preferences
- Hypothesis: Exposure to a poll of constituent views shifts legislative votes.
- Manipulation:
 - Control group receives no polling information.Treatment group receives a letter containing
 - polling information.
- Outcome:

How legislators vote on relevant piece of legislation

Ex.: Levels/doses

- Theory: Legislators vote in line with constituents' preferences
- Hypothesis: Exposure to a poll of constituent views shifts legislative votes.
- Manipulation:
 - Control group receives no polling information.
 - Treatment group 1 receives a letter containing polling information.
 - Treatment group 2 receives two letters containing polling information.
 - etc.
- Outcome:
 - How legislators vote on relevant piece of legislation

Ex.: Qualitative variation

- Theory: Legislators vote in line with constituents' preferences
- Hypothesis: Exposure to a poll of constituent views shifts legislative votes.
- Manipulation:
 - Control group receives no polling information.
 - Treatment group 1 receives a letter containing polling information suggesting public support.
 - Treatment group 2 receives a letter containing polling information suggesting public opposition.
- Outcome:

How legislators vote on relevant piece of legislation

Statistical Inference

Treatments Test Hypotheses!

Treatments Test Hypotheses!

Derive experimental design from hypotheses

Treatments Test Hypotheses!

- Derive experimental design from hypotheses
- Experimental "factors" are expressions of hypotheses as randomized groups
Treatments Test Hypotheses!

- Derive experimental design from hypotheses
- Experimental "factors" are expressions of hypotheses as randomized groups
- What intervention each group receives depends on hypotheses
 - presence/absence
 - levels/doses
 - qualitative variations

Definition

Treatment Effects

Statistical Inference

Questions?

Complexities

- Experiments can have additional "moving parts"
 - Control groups and placebo groups
 - Pre-treatment outcome measurement
 - Within-subjects design features
 - Repeated measures of outcomes
 - Cluster randomization
 - Sampling from a population

· · · ·

None of these are *necessary* for causal inference

1 What is an experiment?

2 Treatment Effects

3 Statistical Inference

The Fundamental Problem of Causal Inference!

- Units have multiple potential outcomes
- We can only observe one of them!
- Thus we never know the individual-level causal effect of a treatment for a given unit

Two Solutions!

- Assume units are all "homogeneous" (i.e., identical)
- 2 Randomly assign units to treatments and compare *average* outcomes

"The Perfect Doctor"

Unit	Y_0	Y_1
1	?	?
2	?	?
3	?	?
4	?	?
5	?	?
6	?	?
7	?	?
8	?	?
Mean	?	?

"The Perfect Doctor"

Unit	Y_0	Y_1
1	?	14
2	6	?
3	4	?
4	5	?
5	6	?
6	6	?
7	?	10
8	?	9
Mean	5.4	11

"The Perfect Doctor"

Unit	Y_0	Y_1
1	13	14
2	6	0
3	4	1
4	5	2
5	6	3
6	6	1
7	8	10
8	8	9
Mean	7	5

We cannot see individual-level causal effects

- We cannot see individual-level causal effects
- We can see average causal effects
 Ex.: Average difference in cancer between those who do and do not smoke

- We cannot see individual-level causal effects
- We can see average causal effects
 Ex.: Average difference in cancer between those who do and do not smoke
- We want to know: $TE_i = Y_{1i} Y_{0i}$

• We want to know: $TE_i = Y_{1i} - Y_{0i}$

- We want to know: $TE_i = Y_{1i} Y_{0i}$
- We can average: $ATE = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$

- We want to know: $TE_i = Y_{1i} Y_{0i}$
- We can average: $ATE = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$
- But we still only see one potential outcome for each unit:

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$

- We want to know: $TE_i = Y_{1i} Y_{0i}$
- We can average: $ATE = E[Y_{1i} - Y_{0i}] = E[Y_{1i}] - E[Y_{0i}]$
- But we still only see one potential outcome for each unit:

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$

Is this what we want to know?

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
(1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
(1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

Are the following statements true?

•
$$E[Y_{1i}] = E[Y_{1i}|X = 1]$$

• $E[Y_{0i}] = E[Y_{0i}|X = 0]$

What we want and what we have:

$$ATE = E[Y_{1i}] - E[Y_{0i}]$$
(1)

$$ATE_{naive} = E[Y_{1i}|X=1] - E[Y_{0i}|X=0]$$
 (2)

Are the following statements true?

$$E[Y_{1i}] = E[Y_{1i}|X = 1]$$
$$E[Y_{0i}] = E[Y_{0i}|X = 0]$$

■ Not in general!

Only true when both of the following hold:

$$E[Y_{1i}] = E[Y_{1i}|X=1] = E[Y_{1i}|X=0]$$
(3)

$$E[Y_{0i}] = E[Y_{0i}|X=1] = E[Y_{0i}|X=0]$$
(4)

- In that case, potential outcomes are *independent* of treatment assignment
- If true, then:

$$ATE_{naive} = E[Y_{1i}|X = 1] - E[Y_{0i}|X = 0]$$
(5)
= $E[Y_{1i}] - E[Y_{0i}]$
= ATE

- This holds in experiments because of randomization, which is a special, physical process of unpredictable sorting²
 - Units differ only in what side of coin was up
 - Experiments randomly reveal potential outcomes
 - Randomization balances Z in expectation

²Not "random" in the casual, everyday sense of the word

Definition

Treatment Effects

Statistical Inference

Experimental Analysis I

- The statistic of interest in an experiment is the (sample) average treatment effect (SATE)
- This boils down to being a mean-difference between two groups:

$$\widehat{SATE} = \left(\frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}\right) - \left(\frac{1}{n_0} \sum_{i=1}^{n_0} Y_{0i}\right)$$
(5)

Experimental Analysis I

- The statistic of interest in an experiment is the (sample) average treatment effect (SATE)
- This boils down to being a mean-difference between two groups:

$$\widehat{SATE} = \left(\frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}\right) - \left(\frac{1}{n_0} \sum_{i=1}^{n_0} Y_{0i}\right)$$
(5)

Experiments do not require "controlling for" anything, if randomization occurred successfully

Experimental Data Structures

An experimental data structure looks like:

unit	treatment	outcome
A	0	5
В	0	7
С	0	9
D	0	4
Е	1	9
F	1	4
G	1	13
Н	1	12

Definition

Statistical Inference

Questions?

1 What is an experiment?

2 Treatment Effects

3 Statistical Inference

Experimental Analysis I

- We don't just care about the size of the SATE. We also want to measure it precisely and know whether it is significantly different from zero (i.e., different from no effect/difference)
- To know that, we need to estimate the variance of the SATE
- The variance is influenced by:
 - Total sample size
 - Variance of the outcome, Y
 - Relative size of each treatment group
 - "Advanced" design features

Experimental Analysis II

Formula for the variance of the SATE is:

$$\widehat{Var}(SATE) = \left(\frac{\widehat{Var}(Y_0)}{n_0}\right) + \left(\frac{\widehat{Var}(Y_1)}{n_1}\right)$$

- Var(Y₀) is control group variance
 Var(Y₁) is treatment group variance
- We often express this as the standard error of the estimate:

$$\widehat{SE}_{SATE} = \sqrt{\frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}}$$

Intuition about Variance

- $\blacksquare Bigger sample \rightarrow smaller SEs$
- Smaller variance \rightarrow smaller SEs
- Efficient use of sample size:
 - When treatment group variances equal, equal sample sizes are most efficient
 - When variances differ, sample units are better allocated to the group with higher variance in Y

Statistical Inference

- To assess whether an effect differs from zero, we need to know the sampling distribution of the ATE
- Two major ways to do this:
 - **1** Assume a parametric distribution (e.g., t-test)
 - 2 Randomization inference
- In large samples, the latter approaches the former

Randomization Inference I

- The randomization (or permutation) distribution is an empirical sampling distribution
- It conveys the variation we would observe in \widehat{ATE} if a null hypothesis, $H_0 : ATE = 0$ was true
- If this null hypothesis is true, then treatment had no effect; the variation in permuted ATEs therefore only reflects sampling variance

unit	treatment	outcome
Α	0	5
В	0	7
С	0	9
D	0	4
Е	1	9
F	1	4
G	1	13
Н	1	12

$$\widehat{ATE} = 3.25$$

unit	treatment	outcome
Α	0	5
В	1	7
С	0	9
D	1	4
Е	0	9
F	1	4
G	0	13
Н	1	12

$$\widehat{ATE} = -1.5$$

unit	treatment	outcome
А	1	5
В	1	7
С	0	9
D	0	4
Е	1	9
F	0	4
G	0	13
Н	1	12

$$\widehat{ATE} = 0.75$$

Randomization Distribution

Randomization	ATE
1	3.25
2	-1.50
3	0.75
4	

In a two-condition experiment, the number of possible permutations is given by $\binom{n}{n_1}$
Randomization Inference II

Randomization inference works as follows:

- Generate every possible randomization scheme
 Or sample from all possible randomizations
- 2 Calculate ATE under each randomization
- The distribution of those estimates is the randomization distribution
- 4 Its variance is $\widehat{Var}(ATE)$
- ⁵ Proportion of values further from 0 than the observed \widehat{ATE} is the p-value for a test of the null hypothesis ($H_0 : ATE = 0$)

Randomization Distribution

Permuted ATE

Randomization Inference in R

calculate ATE from each randomization
set.seed(1) # set random number seed
n <- 10000 # number of randomizations
rd <- replicate(n, coef(lm(d\$y ~ sample(d\$x, 8)))[2L])</pre>

```
# visualize the randomization distribution
hist(rd)
abline(v = coef(lm(y~x, data = d))[2L], col = "red")
```

```
# one-tailed significance test
sum(rd >= coef(lm(y ~ x, data = d))[2L])/n
# two-tailed significance test
sum(abs(rd) >= coef(lm(y ~ x, data = d))[2L])/n
```

Parametric Analysis Stata/R

R:

```
t.test(outcome ~ treatment, data = data)
lm(outcome ~ factor(treatment), data = data)
```

Stata:

```
ttest outcome, by(treatment)
reg outcome i.treatment
```

Definition

Treatment Effects

Statistical Inference

Questions?