Statistical Foundations II

Department of Government London School of Economics and Political Science

1 Administrative Stuff

- 2 An Example
- 3 Statistical Inference
- 4 Variance and Power

1 Administrative Stuff

2 An Example

3 Statistical Inference

4 Variance and Power

Administrative Stuff

Administrative Stuff

Summative Essay Deadline

- Current: Tuesday MT Week 11
- Option A: Tuesday LT Week 1
- Option B: Tuesday LT Week 2

Administrative Stuff

Summative Essay Deadline Current: Tuesday MT Week 11 Option A: Tuesday LT Week 1 Option B: Tuesday LT Week 2

2 Topics for Weeks 6–11?

1 Administrative Stuff

2 An Example

3 Statistical Inference

4 Variance and Power

Definitions

- **1** Unit: A physical object at a particular point in time
- **2 Treatment**: An intervention, whose effect(s) we wish to assess relative to some other (non-)intervention
- 3 **Outcome**: The variable we are trying to explain
- **4 ATE**: The comparison between average potential outcomes under each intervention

Banerjee et al

What are the following in this experiment:

- **1 Unit**: ?
- 2 Treatment: ?
- **3 Outcome**: ?
- 4 **ATE**: ?

What else should we know about this experiment?

1 Administrative Stuff

2 An Example

3 Statistical Inference

4 Variance and Power

Randomization Inference I

- The randomization (or permutation) distribution is an empirical sampling distribution
- It conveys the variation we would observe in \widehat{ATE} if a null hypothesis, $H_0 : ATE = 0$ was true
- If this null hypothesis is true, then treatment had no effect; the variation in permuted ATEs therefore only reflects sampling variance

Randomization Distribution

The randomization distribution is the vector of all possible ATEs that could be observed in the dataset under rerandomization:

Randomization	ATE
1	3.25
2	-1.50
3	0.75
4	

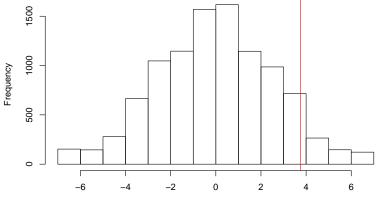
In a two-condition experiment, the number of possible permutations is given by $\binom{n}{n_1}$.

Randomization Inference II

Randomization inference works as follows:

- Generate every possible randomization scheme
 Or sample from all possible randomizations
- 2 Calculate ATE under each randomization
- 3 The distribution of those estimates is the randomization distribution
- 4 Its variance is $\widehat{Var}(ATE)$
- ⁵ Proportion of values further from 0 than the observed \widehat{ATE} is the p-value for a test of the null hypothesis ($H_0 : ATE = 0$)

Randomization Distribution



Permuted ATE

Randomization Inference in R

calculate ATE from each randomization
set.seed(1) # set random number seed
n <- 10000 # number of randomizations
rd <- replicate(n, coef(lm(d\$y ~ sample(d\$x, 8)))[2L])</pre>

```
# visualize the randomization distribution
hist(rd)
abline(v = coef(lm(y~x, data = d))[2L], col = "red")
```

```
# one-tailed significance test
sum(rd >= coef(lm(y ~ x, data = d))[2L])/n
# two-tailed significance test
sum(abs(rd) >= coef(lm(y ~ x, data = d))[2L])/n
```

Parametric Analysis Stata/R

R:

```
t.test(outcome ~ treatment, data = data)
lm(outcome ~ factor(treatment), data = data)
```

Stata:

```
ttest outcome, by(treatment)
reg outcome i.treatment
```

Administrative Stuff

An Example

Statistical Inference

Variance and Power

Questions?

1 Administrative Stuff

2 An Example

3 Statistical Inference

4 Variance and Power

Intuition about Variance

Basic intuition:

- $\blacksquare \text{ Bigger sample} \rightarrow \text{smaller SEs}$
- $\blacksquare \ Smaller \ variance \rightarrow smaller \ SEs$
- Other design features also matter
- Why do we care?

Statistical Power

- Power analysis is used to determine sample size before conducting an experiment
- Type I and Type II Errors

	H_0 False ($ ATE > 0$)	H_0 True (ATE = 0)
	(ATL > 0)	(ATL = 0)
Reject <i>H</i> 0 Accept <i>H</i> 0	True positive Type II Error	Type I Error True zero

True positive rate $(1-\kappa)$ is power

False positive rate is the significance threshold (α)

Doing a Power Analysis

- \blacksquare μ , Treatment group mean outcomes
- n, Sample size
- σ , Outcome variance
- α Statistical significance threshold
- ϕ , a sampling distribution

Power
$$= 1 - \kappa = \phi \left(\frac{|\mu_1 - \mu_0|\sqrt{n}}{2\sigma} - \phi^{-1} \left(1 - \frac{\alpha}{2}\right) \right)$$

(You don't need to know this formula!)

Minimum detectable effect is the smallest effect we could detect given sample size, "true" ATE, variance of outcome measure, power $(1 - \kappa)$, and α .

Minimum detectable effect is the smallest effect we could detect given sample size, "true" ATE, variance of outcome measure, power $(1 - \kappa)$, and α .

In essence: some non-zero effect sizes are not detectable by a study of a given sample size.

Minimum detectable effect is the smallest effect we could detect given sample size, "true" ATE, variance of outcome measure, power $(1 - \kappa)$, and α .

In essence: some non-zero effect sizes are not detectable by a study of a given sample size.

In underpowered study, we will be unlikely to detect true small effects. And most effects are small! $^{\rm 1}$

¹Gelman, A. and Weakliem, D. 2009. "Of Beauty, Sex and Power." American Scientist 97(4): 310–16

- It can help to think in terms of "standardized effect sizes"
- Intuition: How large is the effect in standard deviations of the outcome?
 - Know if effects are large or small
 - Compare effects across studies

- It can help to think in terms of "standardized effect sizes"
- Intuition: How large is the effect in standard deviations of the outcome?
 - Know if effects are large or small
 - Compare effects across studies

Cohen's *d*:

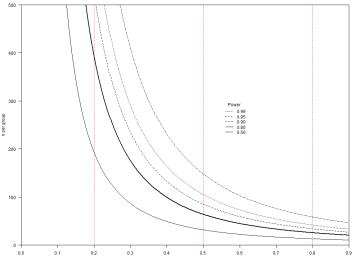
$$d = \frac{\bar{x}_1 - \bar{x}_0}{s}$$
, where $s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_0^2}{n_1 + n_0 - 2}}$

- It can help to think in terms of "standardized effect sizes"
- Intuition: How large is the effect in standard deviations of the outcome?
 - Know if effects are large or small
 - Compare effects across studies

Cohen's *d*:

$$d = \frac{\bar{x}_1 - \bar{x}_0}{s}$$
, where $s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_0^2}{n_1 + n_0 - 2}}$

Small: 0.2; Medium: 0.5; Large: 0.8



Cohen's d

Power analysis in R I

```
power.t.test(
  # sample size (leave blank!)
  n = ,
  # minimum detectable effect size
  delta = 0.4, sd = 1,
  # alpha and power (1-kappa)
  sig.level = 0.05, power = 0.8,
  # two-tailed vs. one-tailed test
  alternative = "two.sided"
)
```

Power analysis in R II

Given a sample size, what is the MDE?
power.t.test(n = 50, power = 0.8)

Given a sample size and MDE, what is power?
power.t.test(n = 50, delta = 0.2)

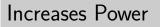
Administrative Stuff

An Example

Statistical Inference

Variance and Power

Increasing/Decreasing Power



- Bigger sample
- Precise measures
- Covariates?

Decreases Power

- Attrition
- Noncompliance
 - Clustering

Covariates in Experiments

Covariates in Experiments

- Identification of a causal effect only requires randomization
- We don't need to include covariates in analysis!

$$Y = \beta_0 + \beta_1 X + \epsilon$$
(1)

$$Y = \beta_0 + \beta_1 X + \beta_{2-J} Z + \epsilon$$
(2)

Covariates in Experiments

- Identification of a causal effect only requires randomization
- We don't need to include covariates in analysis!

$$Y = \beta_0 + \beta_1 X + \epsilon$$
(1)

$$Y = \beta_0 + \beta_1 X + \beta_{2-J} Z + \epsilon$$
(2)

Covariates in Experiments

- Identification of a causal effect only requires randomization
- We don't need to include covariates in analysis!

$$Y = \beta_0 + \beta_1 X + \epsilon$$
(1)

$$Y = \beta_0 + \beta_1 X + \beta_{2-J} Z + \epsilon$$
(2)

Independence of potential outcomes from treatment assignment is an *asymptotic* property of randomization!

Variance and Power

 Basic idea: randomization occurs within strata defined *before* treatment assignment

- Basic idea: randomization occurs within strata defined *before* treatment assignment
- CATE is estimate for each stratum; aggregated to SATE

- Basic idea: randomization occurs within strata defined *before* treatment assignment
- CATE is estimate for each stratum; aggregated to SATE
- Why?
 - Eliminate chance imbalances
 - Optimized for estimating CATEs
 - More precise SATE estimate

- Basic idea: randomization occurs within strata defined *before* treatment assignment
- CATE is estimate for each stratum; aggregated to SATE
- Why?
 - Eliminate chance imbalances
 - Optimized for estimating CATEs
 - More precise SATE estimate

Stratification:Sampling::Blocking:Experiments

Exp.	Control			Treatment			ıt		
1	М	М	Μ	М	F	F	F	F	
2	Μ	Μ	Μ	F	Μ	F	F	F	
3	Μ	Μ	F	F	Μ	Μ	F	F	
4	Μ	F	F	F	Μ	Μ	Μ	F	
5	F	F	F	F	Μ	Μ	Μ	М	

Obs.	X_{1i}	X_{2i}	Di
1	Male	Old	0
2	Male	Old	1
3	Male	Young	1
4	Male	Young	0
5	Female	Old	1
6	Female	Old	0
7	Female	Young	0
8	Female	Young	1

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking *statistically* useful?

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
 - If those covariates affect values of potential outcomes, blocking reduces the variance of the SATE

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
 - If those covariates affect values of potential outcomes, blocking reduces the variance of the SATE
 - Most valuable in small samples

- Blocking ensures ignorability of all covariates used to construct the blocks
- Incorporates covariates explicitly into the design
- When is blocking statistically useful?
 - If those covariates affect values of potential outcomes, blocking reduces the variance of the SATE
 - Most valuable in small samples
 - Not valuable if all blocks have similar potential outcomes

Variance and Power

Statistical Properties I

Complete randomization:

$$SATE = \frac{1}{n_1} \sum Y_{1i} - \frac{1}{n_0} \sum Y_{0i}$$

Block randomization:

$$SATE_{blocked} = \sum_{1}^{J} \left(\frac{n_j}{n} \right) \left(\widehat{CATE}_j \right)$$

Obs.	X_{1i}	X_{2i}	D_i	Y_i	CATE
1	Male	Old	0	5	
2	Male	Old	1	10	
3	Male	Young	1	4	
4	Male	Young	0	1	
5	Female	Old	1	6	
6	Female	Old	0	2	
7	Female	Young	0	6	
8	Female	Young	1	9	

Obs.	X_{1i}	X_{2i}	D_i	Y_i	CATE
1	Male	Old	0	5	F
2	Male	Old	1	10	5
3	Male	Young	1	4	
4	Male	Young	0	1	
5	Female	Old	1	6	
6	Female	Old	0	2	
7	Female	Young	0	6	
8	Female	Young	1	9	

Obs.	X_{1i}	X_{2i}	D_i	Y_i	CATE
1	Male	Old	0	5	5
2	Male	Old	1	10	5
3	Male	Young	1	4	2
4	Male	Young	0	1	3
5	Female	Old	1	6	
6	Female	Old	0	2	
7	Female	Young	0	6	
8	Female	Young	1	9	

Obs.	X_{1i}	X_{2i}	D_i	Y_i	CATE
1	Male	Old	0	5	5
2	Male	Old	1	10	5
3	Male	Young	1	4	2
4	Male	Young	0	1	3
5	Female	Old	1	6	Л
6	Female	Old	0	2	4
7	Female	Young	0	6	
8	Female	Young	1	9	

Obs.	X_{1i}	X_{2i}	D_i	Y_i	CATE
1	Male	Old	0	5	5
2	Male	Old	1	10	5
3	Male	Young	1	4	2
4	Male	Young	0	1	3
5	Female	Old	1	6	Л
6	Female	Old	0	2	4
7	Female	Young	0	6	2
8	Female	Young	1	9	3

SATE Estimation

$$SATE = \left(\frac{2}{8} * 5\right) + \left(\frac{2}{8} * 3\right) + \left(\frac{2}{8} * 4\right) + \left(\frac{2}{8} * 3\right)$$
$$= 3.75$$

SATE Estimation

$$SATE = \left(\frac{2}{8} * 5\right) + \left(\frac{2}{8} * 3\right) + \left(\frac{2}{8} * 4\right) + \left(\frac{2}{8} * 3\right)$$
$$= 3.75$$

The blocked and unblocked estimates are the same here because Pr(Treatment) is constant across blocks and blocks are all the same size.

SATE Estimation

- We can use weighted regression to estimate this in an OLS framework
- Weights are the inverse prob. of being treated w/in block

Pr(Treated) by block: p_{ij} = Pr(D_i = 1|J = j)
Weight (Treated): w_{ij} = 1/p_{ij}
Weight (Control): w_{ij} = 1/(1-p_{ij})

Statistical Properties II

Complete randomization:

$$\widehat{SE}_{SATE} = \sqrt{\frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}}$$

Block randomization:

$$\widehat{SE}_{SATE_{blocked}} = \sqrt{\sum_{j=1}^{J} \left(\frac{n_j}{n}\right)^2 \widehat{Var}(CATE_j)}$$

Statistical Properties II

Complete randomization:

$$\widehat{SE}_{SATE} = \sqrt{\frac{\widehat{Var}(Y_0)}{n_0} + \frac{\widehat{Var}(Y_1)}{n_1}}$$

Block randomization:

$$\widehat{SE}_{SATE_{blocked}} = \sqrt{\sum_{j=1}^{J} \left(\frac{n_j}{n}\right)^2 \widehat{Var}(CATE_j)}$$

When is the blocked design more efficient?

Administrative Stuff

An Example

Statistical Inference

Variance and Power

Questions?

Recall our key definition:

The observation of units after, and possibly before, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

Recall our key definition:

The observation of units after, **and possibly before**, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

Recall our key definition:

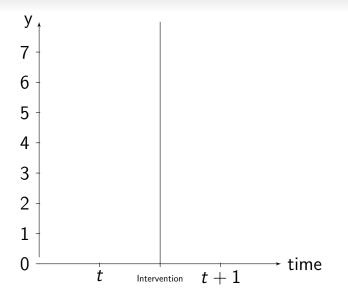
The observation of units after, **and possibly before**, a randomly assigned intervention in a controlled setting, which tests one or more precise causal expectations

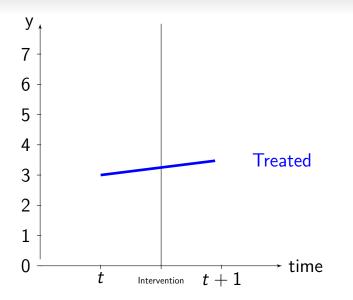
Pretreatment measures of the outcome can be particularly helpful!

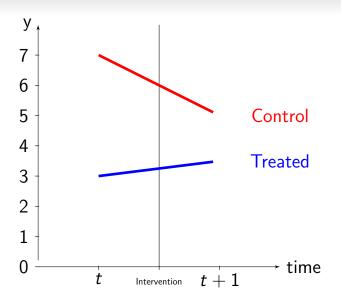
 This changes our estimator of ATE from simple mean-difference to difference-in-differences (DID)

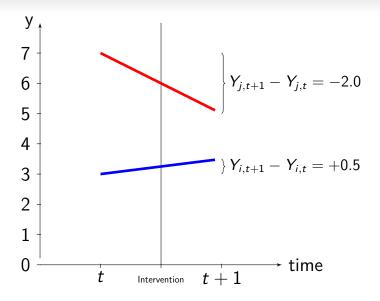
$$(\hat{Y}_{0,t+1} - \hat{Y}_{0,t}) - (\hat{Y}_{j,t+1} - \hat{Y}_{j,t})$$

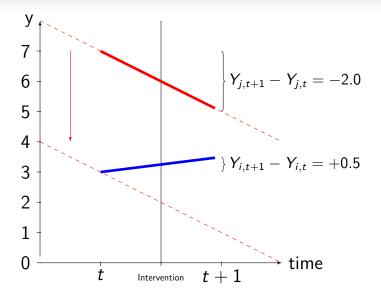
 Advantageous because variance for paired samples decreases as correlation between Y₀ and Y₁ increases

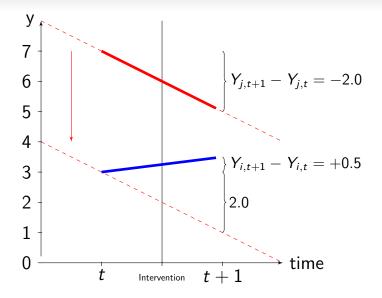


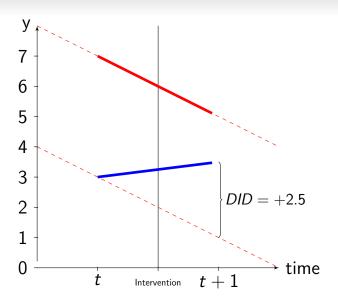












Statistical Advantages I

In post-treatment-only designs:

$$\widehat{ATE}_{Diff} = \frac{\sum_{i=1}^{n_1} (x_{i,1,t+1})}{n_1} - \frac{\sum_{i=1}^{n_0} (x_{i,0,t+1})}{n_0}$$

The variance of this estimate is:

$$\mathit{Var}(\widehat{\mathit{ATE}}_{\mathit{Diff}}) = \mathit{Var}(ar{Y}_{1,t+1}) + \mathit{Var}(ar{Y}_{0,t+1})$$

Statistical Advantages II

In pre/post-treatment designs:

$$\widehat{ATE}_{DID} = \frac{\sum_{i=1}^{n_1} (x_{i,1,t+1} - x_{i,1,t})}{n_1} - \frac{\sum_{i=1}^{n_0} (x_{i,0,t+1} - x_{i,0,t})}{n_0}$$

The variance of this estimate is:

$$\begin{aligned} & \mathsf{Var}(\widehat{\mathsf{ATE}}_{\mathsf{DID}}) = \mathsf{Var}(\bar{Y}_{1,t+1} - \bar{Y}_{1,t}) + \mathsf{Var}(\bar{Y}_{0,t+1} - \bar{Y}_{0,t}) \\ &= \left(\mathsf{Var}(\bar{Y}_{1,t+1}) + \mathsf{Var}(\bar{Y}_{1,t}) - \mathsf{Cov}(\bar{Y}_{1,t+1}, \bar{Y}_{1,t})\right) \\ &+ \left(\mathsf{Var}(\bar{Y}_{0,t+1}) + \mathsf{Var}(\bar{Y}_{0,t}) - \mathsf{Cov}(\bar{Y}_{0,t+1}, \bar{Y}_{0,t})\right) \end{aligned}$$

create some fake data
set.seed(54321)
n <- 400L
y0 <- rnorm(n)
x <- rbinom(n, 1L, 0.5)</pre>

Practicalities

- Blocked randomization and use of pre-treatment measures only works in some circumstances
- Need to observe covariates pre-treatment in order to block on them

Challenging in a cross-sectional design

- The cost of gathering pre-treatment data might also outweigh the gain in precision
 - May introduce other biases

Administrative Stuff

An Example

Statistical Inference

Variance and Power

Questions?

Clustering

- Everything so far assumes units are independent
- Sometimes units are obviously not independent
 e.g., Students within classrooms
- Non-independence limits our ability to randomize at the unit level and reduces statistical power