Preview of Next Week

Who is being surveyed?

Department of Political Science and Government Aarhus University

September 15, 2014

1 Review of Last Week

- 2 New Material to Cover
 - Total Survey Error
 - Populations
 - Representativeness
 - Sampling Frames
 - Sampling without a Frame
 - Simple Random Sampling
- 3 Preview of Next Week

1 Review of Last Week

- 2 New Material to Cover
- 3 Preview of Next Week

Paul Lazarsfeld (1901–1976)

- Originally from Austria; spent career at Columbia University
- Pioneered the study of mass media (Princeton Radio Project)
 - The War of the Worlds (1938)
- Created the survey panel to study radio impact
- First ever election surveys: The People's Choice (1940) and Voting (1948)
- Two-step flow of influence: Personal Influence

Preview of Next Week

Criteria for Causal Inference

- 1 Relationship
- 2 Temporal precedence
- 3 Nonconfounding
- 4 Mechanism
- 5 Level of analysis

Preview of Next Week

Assignment for this week

- 1 Form groups of 3 (or so)
- 2 Present your research question idea(s)
- 3 Give feedback to your peers on the idea
- 4 Share some with the whole class

- 2 New Material to Cover
 - Total Survey Error
 - Populations
 - Representativeness
 - Sampling Frames
 - Sampling without a Frame
 - Simple Random Sampling

3 Preview of Next Week

2 New Material to CoverTotal Survey Error

- Populations
- Representativeness
- Sampling Frames
- Sampling without a Frame
- Simple Random Sampling

Preview of Next Week

Total Survey Error

- Envision the perfect survey!
- Errors introduced in design, implementation, and analysis
- Late 20th-century survey research focused on minimizing particular sources of error
- "Total Survey Error" approach is about trade-offs between all sources of error, costs, and time

New Material to Cover Total Survey Error

Populations

- Representativeness
- Sampling Frames
- Sampling without a Frame
- Simple Random Sampling

Preview of Next Week

Inference Population

We want to speak to a population

But what population is it?

Preview of Next Week

Inference Population

We want to speak to a population

But what population is it?

Example: "The Danish population"

Preview of Next Week

Population Census

All population units are in study

Preview of Next Week

Population Census

All population units are in study

History of national censuses

- Denmark 1769–1970 (sporadic)
- U.S. 1790 (decennial)
- India 1871 (decennial)

Preview of Next Week

Population Census

All population units are in study

History of national censuses

- Denmark 1769–1970 (sporadic)
- U.S. 1790 (decennial)
- India 1871 (decennial)
- Other kinds of census
 - Citizen registry
 - Commercial, medical, government records
 - "Big data"

Preview of Next Week

Advantages and Disadvantages

Advantages

Preview of Next Week

Advantages and Disadvantages

Advantages

- Perfectly representative
- Sample statistics are population parameters

Preview of Next Week

Advantages and Disadvantages

Advantages

- Perfectly representative
- Sample statistics are population parameters

- Costs
- Feasibility
- Need

- Total Survey Error
- Populations

Representativeness

- Sampling Frames
- Sampling without a Frame
- Simple Random Sampling

Preview of Next Week

Representativeness

What does it mean for a sample to be representative?

Preview of Next Week

Obtaining Representativeness

Quota sampling (common prior to the 1940s)

Preview of Next Week

Obtaining Representativeness

Quota sampling (common prior to the 1940s)

Simple random sampling

Preview of Next Week

Obtaining Representativeness

Quota sampling (common prior to the 1940s)

- Simple random sampling
- Advanced survey designs (discuss next week)

Preview of Next Week

Convenience Samples

What is a convenience sample?

Preview of Next Week

Convenience Samples

What is a convenience sample?

Different types:

- Passive/opt-in
- Sample of convenience (not a sample per se)
- Sample matching
- Online panels

Preview of Next Week

Convenience Samples

What is a convenience sample?

Different types:

- Passive/opt-in
- Sample of convenience (not a sample per se)
- Sample matching
- Online panels

"Purposive" samples (common in qualitative studies)

Preview of Next Week

Questions about convenience samples?

2 New Material to Cover

- Total Survey Error
- Populations
- Representativeness
- Sampling Frames
- Sampling without a Frame
- Simple Random Sampling

Sampling Frames

- Enumeration (listing) of all units eligible for sample selection
 - Two flavors:
 - Random sample from an ordered list
 - Systematic sampling from a randomized list
- Building a sampling frame
 - Combine existing lists
 - Canvass/enumerate from scratch

Preview of Next Week

- Coverage!
 - Undercoverage
 - Overcoverage

Preview of Next Week

- Coverage!
 - Undercoverage
 - Overcoverage
- What is a unit?

Preview of Next Week

- Coverage!
 - Undercoverage
 - Overcoverage
- What is a unit?
- Clustering

Preview of Next Week

Big considerations

- Coverage!
 - Undercoverage
 - Overcoverage
- What is a unit?

Clustering

Overlap between units

Preview of Next Week

- Coverage!
 - Undercoverage
 - Overcoverage
- What is a unit?
- Clustering
- Overlap between units
- List maintenance

Preview of Next Week

Multi-frame Designs

Construct one sample from multiple sampling frames

E.g., "Dual-frame" (landline and mobile)

- Analytically complicated
 - Overlap of frames
 - Sample probabilities in each frame

- Total Survey Error
- Populations
- Representativeness
- Sampling Frames
- Sampling without a Frame
- Simple Random Sampling

Sometimes we have a population that can be sampled but not (easily) enumerated in full

Sometimes we have a population that can be sampled but not (easily) enumerated in full

Examples

Protest attendees

Sometimes we have a population that can be sampled but not (easily) enumerated in full

Examples

- Protest attendees
- Streams (e.g., people buying groceries)

Sometimes we have a population that can be sampled but not (easily) enumerated in full

Examples

- Protest attendees
- Streams (e.g., people buying groceries)
- Points in time

Sometimes we have a population that can be sampled but not (easily) enumerated in full

Examples

- Protest attendees
- Streams (e.g., people buying groceries)
- Points in time

Population is the sampling frame

Preview of Next Week

Rare or "hidden" populations

Big concern: coverage!

Preview of Next Week

Rare or "hidden" populations

Big concern: coverage!

Solutions?

Preview of Next Week

Rare or "hidden" populations

Big concern: coverage!

Solutions?

- Snowball sampling
- Informant sampling
- Targeted sampling
- Respondent-driven sampling

How does RDS work?

Preview of Next Week

Questions?

Preview of Next Week

Activity!

Work in pairs

Develop two sampling frames/sampling strategies for a population

Share with class and discuss

2 New Material to Cover

- Total Survey Error
- Populations
- Representativeness
- Sampling Frames
- Sampling without a Frame
 - Simple Random Sampling

Preview of Next Week

Simple Random Sampling (SRS)

Advantages

- Simplicity of sampling
- Simplicity of analysis

- Need sampling frame and units without any structure
- Possibly expensive

Sample Estimates from an SRS

- Each unit in frame has equal probability of selection
- Sample statistics are unweighted
- Variances are easy to calculate
- Easy to calculate sample size need for a particular variance

Preview of Next Week

Sample mean

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{1}$$

where y_i = value for a unit, and n = sample size

$$SE_{\bar{y}} = \sqrt{(1-f)\frac{s^2}{n}}$$
(2)

where f = proportion of population sampled, s^2 = sample variance, and n = sample size

Preview of Next Week

Sample proportion

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{3}$$

where y_i = value for a unit, and n = sample size

$$SE_{\bar{y}} = \sqrt{\frac{(1-f)}{(n-1)}p(1-p)}$$
 (4)

where f = proportion of population sampled,

- p = sample proportion, and
- *n* = sample size

Preview of Next Week

Estimating sample size

- Imagine we want to conduct a political poll
- We want to know what percentage of the public will vote for which coalition/party
- How big of a sample do we need to make a relatively precise estimate of voter support?

Preview of Next Week

(5)

Estimating sample size

$$Var(p) = (1 - f) \frac{p(1 - p)}{n - 1}$$

Given the large population:

$$Var(p) = \frac{p(1-p)}{n-1}$$
(6)

Need to solve the above for *n*.

(7)

Preview of Next Week

(5)

Estimating sample size

$$Var(p) = (1 - f) \frac{p(1 - p)}{n - 1}$$

Given the large population:

$$Var(p) = \frac{p(1-p)}{n-1}$$
(6)

Need to solve the above for *n*.

$$n = \frac{p(1-p)}{v(p)} = \frac{p(1-p)}{SE^2}$$
(7)

Estimating sample size

Determining sample size requires:

- A possible value of p
- A desired precision (SE)

If support for each coalition is evenly matched (p = 0.5):

$$n = \frac{0.5(1 - 0.5)}{SE^2} = \frac{0.25}{SE^2} \tag{8}$$

Preview of Next Week

Estimating sample size

What precision (margin of error) do we want?

• +/- 2 percentage points: SE = 0.01

$$n = \frac{0.25}{0.01^2} = \frac{0.25}{0.0001} = 2500 \tag{9}$$

Preview of Next Week

Estimating sample size

What precision (margin of error) do we want?

• +/- 2 percentage points: SE = 0.01

$$n = \frac{0.25}{0.01^2} = \frac{0.25}{0.0001} = 2500 \tag{9}$$

• +/- 5 percentage points: SE = 0.025

$$n = \frac{0.25}{0.000625} = 400 \tag{10}$$

Preview of Next Week

Estimating sample size

What precision (margin of error) do we want?

• +/- 2 percentage points: SE = 0.01

$$n = \frac{0.25}{0.01^2} = \frac{0.25}{0.0001} = 2500 \tag{9}$$

• +/- 5 percentage points: SE = 0.025

$$n = \frac{0.25}{0.000625} = 400 \tag{10}$$

• +/- 0.5 percentage points: SE = 0.0025

$$n = \frac{0.25}{0.0000625} = 40,000 \tag{11}$$

Preview of Next Week

Important considerations

Required sample size depends on p and SE

- Required sample size depends on p and SE
- In large populations, population size is irrelevant

- Required sample size depends on p and SE
- In large populations, population size is irrelevant
- In small populations, precision is influenced by the proportion of population sampled

- Required sample size depends on p and SE
- In large populations, population size is irrelevant
- In small populations, precision is influenced by the proportion of population sampled
- In anything other than an SRS, sample size calculation is more difficult

- Required sample size depends on p and SE
- In large populations, population size is irrelevant
- In small populations, precision is influenced by the proportion of population sampled
- In anything other than an SRS, sample size calculation is more difficult
- Much political science research assumes SRS even though a more complex design is actually used

Preview of Next Week

Questions about SRS?

1 Review of Last Week

- 2 New Material to Cover
- 3 Preview of Next Week

Preview of Next Week

Next week's agenda

- Stratified sampling
- Cluster sampling
- Estimates, variances, and design effects
- Discuss sampling schemes in published research

Preview of Next Week

Presentations?

- Burnham et al.: Mortality in Iraq
- Reinisch et al.: Registry data study
- Walker and Enticott: Surveying public managers

Assignment for next week

- Find a real survey or published study based on a survey
- Figure out its population, sampling frame, and sample
- Write up 0.5-1.0 pages discussing and evaluating its sampling approach
- We will discuss these in class next week