Weighting

Coding and Data Preparation

Wrap-up

Data Management

Department of Political Science and Government Aarhus University

November 24, 2014

Data Management

- Weighting
- Handling missing data
 - Categorizing missing data types
 - Imputation
- Summary measures
 - Scale construction
 - Combining question branches
- Coding and editing
 - Open-ended questions
 - Marking problematic data
- Data preparation
 - Codebook creation
 - File formats
 - Archiving, access, and rights

1 Weighting

- 2 Missing Data
- 3 Coding and Data Preparation
- 4 Wrap-up
- 5 Preview of Next Time

Weighting

1 Weighting

- 2 Missing Data
- 3 Coding and Data Preparation
- 4 Wrap-up
- 5 Preview of Next Time

Goal of Survey Research

- The goal of survey research is to estimate population-level quantities (e.g., means, proportions, totals)
- Samples estimate those quantities with uncertainty (sampling error)
- Sample estimates are unbiased if they match population quantities

Realities of Survey Research

- Sample may not match population for a variety of reasons:
 - Due to constraints on design
 - Due to sampling frame coverage
 - Due to intentional over/under-sampling
 - Due to nonresponse
 - Due to sampling error

Realities of Survey Research

- Sample may not match population for a variety of reasons:
 - Due to constraints on design
 - Due to sampling frame coverage
 - Due to intentional over/under-sampling
 - Due to nonresponse
 - Due to sampling error

Weights can be used to "correct" a sample

Realities of Survey Research

- Sample may not match population for a variety of reasons:
 - Due to constraints on design
 - Due to sampling frame coverage
 - Due to intentional over/under-sampling
 - Due to nonresponse
 - Due to sampling error
- Weights can be used to "correct" a sample
- Weighting is never perfect
 - Limited to work with observed variables
 - Rarely have good knowledge of coverage, nonresponse, or sampling error
 - Weighting can increase sampling variance

Three Kinds of Weights

Design Weights

- Nonresponse Weights
- Post-Stratification Weights

Design Weights

- Address design-related unequal probability of selection into a sample
- Applied to *complex survey designs*:
 - Disproportionate allocation stratified sampling
 - Oversampling of subpopulations
 - Cluster sampling
 - Combinations thereof

Design Weights: Simple Random Sampling

- Imagine sampling frame of 100,000 units
- Sample size will be 1,000
- What is the probability that a unit in the sampling frame is included in the sample?

Design Weights: Simple Random Sampling

- Imagine sampling frame of 100,000 units
- Sample size will be 1,000
- What is the probability that a unit in the sampling frame is included in the sample?

$$\rho = \frac{1000}{100,000} = .01$$

Design Weights: Simple Random Sampling

- Imagine sampling frame of 100,000 units
- Sample size will be 1,000
- What is the probability that a unit in the sampling frame is included in the sample?

$$p = \frac{1000}{100,000} = .01$$

I

- Design weight for all units is w = 1/p = 100
- SRS is self-weighting

- Imagine sampling frame of 100,000 units
 90,000 Danes & 10,000 Immigrants
- Sample size will be 1,000 (proportionate allocation)
 900 Danes & 100 Immigrants
- What is the probability that a unit in the sampling frame is included in the sample?

Imagine sampling frame of 100,000 units

- 90,000 Danes & 10,000 Immigrants
- Sample size will be 1,000 (proportionate allocation)
 900 Danes & 100 Immigrants
- What is the probability that a unit in the sampling frame is included in the sample?

$$p_{Danish} = \frac{900}{90,000} = .01$$
$$p_{Imm} = \frac{100}{10,000} = .01$$

- Imagine sampling frame of 100,000 units
 - 90,000 Danes & 10,000 Immigrants
- Sample size will be 1,000 (proportionate allocation)
 900 Danes & 100 Immigrants
- What is the probability that a unit in the sampling frame is included in the sample?

$$p_{Danish} = \frac{900}{90,000} = .01$$
$$p_{Imm} = \frac{100}{10,000} = .01$$

- Design weight for all units is w = 1/p = 100
- Proportionate allocation is self-weighting

Imagine sampling frame of 100,000 units
 90,000 Danes & 10,000 Immigrants

- Sample size will be 1,000 (disproportionate allocation)
 - 500 Danes & 500 Immigrants
- What is the probability that a unit in the sampling frame is included in the sample?

Imagine sampling frame of 100,000 units
 90,000 Danes & 10,000 Immigrants

- Sample size will be 1,000 (disproportionate allocation)
 - 500 Danes & 500 Immigrants
- What is the probability that a unit in the sampling frame is included in the sample?

$$p_{Danish} = \frac{500}{90,000} = .0056$$
$$p_{lmm} = \frac{500}{10,000} = .05$$

Imagine sampling frame of 100,000 units
 90,000 Danes & 10,000 Immigrants

- Sample size will be 1,000 (disproportionate allocation)
 - 500 Danes & 500 Immigrants
- What is the probability that a unit in the sampling frame is included in the sample?

$$p_{Danish} = \frac{500}{90,000} = .0056$$
$$p_{Imm} = \frac{500}{10,000} = .05$$

Design weights differ across units:

•
$$w_{Danish} = 1/p_{Danish} = 178.57$$

• $w_{Imm} = 1/p_{Imm} = 20$

Disproportionate allocation is not self-weighting

Design Weights: Cluster Sample

- Imagine sampling frame of 1000 units in 5 clusters of varying sizes
- Sample size will be 10 each from 3 clusters
- What is the probability that a unit in the sampling frame is included in the sample?

$$p = n_{clusters}/N_{clusters} * 1/n_{cluster} = \frac{3}{5} * 1/n_{cluster}$$

Design Weights: Cluster Sample

- Imagine sampling frame of 1000 units in 5 clusters of varying sizes
- Sample size will be 10 each from 3 clusters
- What is the probability that a unit in the sampling frame is included in the sample?

$$p = n_{clusters}/N_{clusters} * 1/n_{cluster} = \frac{3}{5} * 1/n_{cluster}$$

Design Weights: Cluster Sample

- Imagine sampling frame of 1000 units in 5 clusters of varying sizes
- Sample size will be 10 each from 3 clusters
- What is the probability that a unit in the sampling frame is included in the sample?

 $\square p = n_{clusters}/N_{clusters} * 1/n_{cluster} = \frac{3}{5} * 1/n_{cluster}$

- Design weights differ across units:
 - Clusters are equally likely to be sampled
 - Probability of selection within cluster varies with cluster size
- Cluster sampling is rarely *self-weighting*

Nonresponse Weights

- Correct for nonresponse
- Require knowledge of nonrespondents on variables that have been measured for respondents
- Requires data are missing at random
- Two common methods
 - Weighting classes
 - Propensity score subclassification

Nonresponse Weights: Example

Imagine immigrants end up being less likely to respond¹

$$RR_{Danish} = 1.0$$

$$RR_{Imm} = 0.8$$

¹This refers to a lower RR in this particular survey sample, not in general.

Nonresponse Weights: Example

- Imagine immigrants end up being less likely to respond¹
 - $RR_{Danish} = 1.0$ $RR_{Imm} = 0.8$

Using weighting classes:

•
$$w_{rr,Danish} = 1/1 = 1$$

• $w_{rr,Imm} = 1/0.8 = 1.25$

Can generalize to multiple variables and strata

¹This refers to a lower RR in this particular survey sample, not in general.

 Correct for nonresponse, coverage errors, and sampling errors

- Correct for nonresponse, coverage errors, and sampling errors
- Reweight sample data to match population distributions
 - Divide sample and population into strata
 - Weight units in each stratum so that the weighted sample stratum contains the same proportion of units as the population stratum does

- Correct for nonresponse, coverage errors, and sampling errors
- Reweight sample data to match population distributions
 - Divide sample and population into strata
 - Weight units in each stratum so that the weighted sample stratum contains the same proportion of units as the population stratum does
- There are numerous other related techniques

Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Danish, Female	.45	.5		
Danish, Male	.45	.4		
Immigrant, Female	.05	.07		
Immigrant, Male	.05	.03		

PS weight is just $w_{ps} = N_l/n_l$

Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Danish, Female	.45	.5	Over	
Danish, Male	.45	.4	Under	
Immigrant, Female	.05	.07	Over	
Immigrant, Male	.05	.03	Under	

Sweight is just $w_{ps} = N_l/n_l$

Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Danish, Female	.45	.5	Over	0.900
Danish, Male	.45	.4	Under	
Immigrant, Female	.05	.07	Over	
Immigrant, Male	.05	.03	Under	

Sweight is just $w_{ps} = N_l/n_l$

Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Danish, Female	.45	.5	Over	0.900
Danish, Male	.45	.4	Under	1.125
Immigrant, Female	.05	.07	Over	
Immigrant, Male	.05	.03	Under	

PS weight is just $w_{ps} = N_l/n_l$

Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Danish, Female	.45	.5	Over	0.900
Danish, Male	.45	.4	Under	1.125
Immigrant, Female	.05	.07	Over	0.714
Immigrant, Male	.05	.03	Under	

PS weight is just $w_{ps} = N_l/n_l$

Imagine our sample ends up skewed on immigration status and gender relative to the population

Group	Pop.	Sample	Rep.	Weight
Danish, Female	.45	.5	Over	0.900
Danish, Male	.45	.4	Under	1.125
Immigrant, Female	.05	.07	Over	0.714
Immigrant, Male	.05	.03	Under	1.667

Sweight is just $w_{ps} = N_l/n_l$

- Should only be done after correcting for sampling design
- Strata must be large (n > 15)
- Need accurate population-level stratum sizes
- Only useful if stratifying variables are related to key constructs of interest

- Should only be done after correcting for sampling design
- Strata must be large (n > 15)
- Need accurate population-level stratum sizes
- Only useful if stratifying variables are related to key constructs of interest
- This is the basis for inference in non-probability samples
 - Probability samples make design-based inferences
 - Non probability complex post stratify to obtain
Questions about weighting?

1 Weighting

2 Missing Data

3 Coding and Data Preparation

4 Wrap-up

5 Preview of Next Time

Sources of Missing Data

Unit or item nonresponse

Attrition or break-off

Data loss

Effects of Missing Data

Sampling variance and effective sample size

Effects of Missing Data

Sampling variance and effective sample size

Scale construction and multi-variate analysis

Effects of Missing Data

Sampling variance and effective sample size

Scale construction and multi-variate analysis

Bias in estimates

Definition

Definition: Systematic replacement of missing values

Definition: Systematic replacement of missing values

- Why?
 - Casewise deletion creates loss of information
 - Preserve sampling variances (i.e., no loss of precision)

Definition: Systematic replacement of missing values

- Why?
 - Casewise deletion creates loss of information
 - Preserve sampling variances (i.e., no loss of precision)
- Considerations
 - Why are data missing?
 - How do we impute?
 - What are the consequences of imputation?

Missing Data Assumptions

Missing Completely At Random (MCAR)

- Missing At Random (MAR)
- Missing Not At Random (MNAR)

Single Imputation

Single Imputation

- Mean imputation
- Top/bottom category imputation
- Random imputation
- Hot deck imputation
- **Regression imputation**

Single Imputation

- Mean imputation
- Top/bottom category imputation
- Random imputation
- Hot deck imputation
- **Regression imputation**

Multiple Imputation

Single Imputation

- Mean imputation
- Top/bottom category imputation
- Random imputation
- Hot deck imputation
- **Regression imputation**
- Multiple Imputation
 - Single imputation multiple times, combining results across data sets
 - Can apply numerous imputation methods
 - Accounts for uncertainty due to missingness

1 Weighting

2 Missing Data

3 Coding and Data Preparation

4 Wrap-up

5 Preview of Next Time

Coding

- What is coding?
 - Categorizing responses
 - Assigning numeric values to categories

Coding

- What is coding?
 - Categorizing responses
 - Assigning numeric values to categories
- When in the data collection process do we code?
 - In the field
 - After data collection

Coding

- What is coding?
 - Categorizing responses
 - Assigning numeric values to categories

When in the data collection process do we code?

- In the field
- After data collection
- How do we code?
 - Create set of *exhaustive*, *mutually exclusive* categories
 - Assign responses to categories
 - Add new categories, as needed

Practice Coding

1 Code the Gordon Brown responses as:

- Correct
- Incorrect
- "Don't know"
- 2 Code the MIP responses into issue categories

Data Editing

Leftover of manual data recording

Software handles most data editing now

- Online survey tools (e.g., Qualtrics)
- CATI systems
- May still have problematic data points that need to be marked or changed
 - If still in field, may clarify answers with respondents

Why do data need to be anonymous?

Why do data need to be anonymous?

- Guarantees of anonymity
- Sensitive data

Why do data need to be anonymous?

- Guarantees of anonymity
- Sensitive data

When are data non-anonymous?

Why do data need to be anonymous?

- Guarantees of anonymity
- Sensitive data

When are data non-anonymous?

- Identifying information
- Statistical identifiability

Why do data need to be anonymous?

- Guarantees of anonymity
- Sensitive data

When are data non-anonymous?

- Identifying information
- Statistical identifiability

How do we anonymize?

Why do data need to be anonymous?

- Guarantees of anonymity
- Sensitive data

When are data non-anonymous?

- Identifying information
- Statistical identifiability
- How do we anonymize?
 - Restrict data access
 - Remove identifying variables

Data Storage, Archiving, and Sharing

In what formats can we store survey data?

Data Storage, Archiving, and Sharing

In what formats can we store survey data?

- Paper
- Punchcards
- Digitally

Data Storage, Archiving, and Sharing

In what formats can we store survey data?

- Paper
- Punchcards
- Digitally
- Considerations in digital formats
 - Open versus proprietary
 - Human-readable versus machine-readable
 - File sizes
 - Study-level metadata
 - Question-level metadata

Study-level Metadata

- Title
- Creator/Author
- Sponsor
- Description
- Date of publication
- Dates of data collection
- Population, sampling frame, etc.
- Sampling design
- Sample size
- Recruitment details
- Mode
- Rights

Question-level Metadata

- Response codes
- Response labels
- Variable labels
- Variable names
- Missing data categories
- Variable types

Mode

Question-level Metadata II

- Details of randomization or question order
- Exclusion criteria
- Source of data (if not from R)
- Frequencies or summary statistics
- Interviewer instructions
- Constraints on responses

Example Codebook²

Ouestion B 10 DK Which party did you vote for in that election? (Denmark) Variable name and label: prtvtcdk Party voted for in last national election. Denmark Values and categories 01 Socialdemokraterne - the Danish social democtrats 02 Det Radikale Venstre - Danish Social-Liberal Party 03 Det Konservative Folkeparti - Conservative 04 SF Socialistisk Folkeparti - Socialist People's Party 05 Dansk Folkeparti - Danish peoples party 06 Kristendemokraterne - Christian democtrats 07 Venstre, Danmarks Liberale Parti - Venstre 08 Liberal Alliance - Liberal Alliance 09 Enhedslisten - Unity List - The Red-Green Alliance 10 Andet - other 66 Not applicable 77 Refusal 88 Don't know 99 No answer Filter: If code 1 at B9

² From: http://www.europeansocialsurvey.org/docs/round6/survey/ESS6_appendix_a7_e02_0.pdf

File Formats

- Go to the course website
- Open data files under Week 11
- All contain the same data
- What do you notice about the different files?

Metadata Standards

- Most survey data are stored in proprietary formats using codebooks constructed in arbitrary formats
 - This makes it hard to work with survey data
- There are common standards for metadata
 - Dublin Core (DC)
 - Data Documentation Initiative (DDI)
For Your Project

 Discuss appropriate file format for data storage/sharing

Discuss how data can be used after collection (i.e., rights)

- Discuss codebook creation
 - When do you create a codebook
 - What goes in your codebook
 - Where do you record study-level metadata

1 Weighting

- 2 Missing Data
- 3 Coding and Data Preparation
 - 4 Wrap-up
- 5 Preview of Next Time

Coding and Data Preparation

Wrap-up

Preview of Next Time

Total Survey Error

- Design-Related Errors
 - Coverage Error
 - Sampling Error
 - Nonresponse Error
 - Adjustment Error

Coding and Data Preparation

Wrap-up

Preview of Next Time

Total Survey Error

- Design-Related Errors
 - Coverage Error
 - Sampling Error
 - Nonresponse Error
 - Adjustment Error
- Measurement Errors
 - Construct Validity
 - Measurement Error and Response Biases
 - Processing Error

Coding and Data Preparation

Wrap-up

Preview of Next Time

Total Survey Error

- Design-Related Errors
 - Coverage Error
 - Sampling Error
 - Nonresponse Error
 - Adjustment Error
- Measurement Errors
 - Construct Validity
 - Measurement Error and Response Biases
 - Processing Error
- Our goal: Minimize *total* error (thus maximizing data quality), within the constraints of time, cost, and other resources

1 Weighting

- 2 Missing Data
- 3 Coding and Data Preparation
- 4 Wrap-up
 - 5 Preview of Next Time

Agenda for next two classes

Presentations

Prepare questions to get help with

Email me if you want to meet (after Dec. 4)